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Abstract

In the past decade, the emerging techniques of compressive sensing (CS) and sparse

coding (SC) have been widely applied in the fields of signal processing, wireless com-

munication and medical imaging. The core of these applications is to develop an ef-

ficient recover algorithm and a compact sparse representation for signals. The quality

of the recovered or sparsely represented signal can be measured by several key crite-

ria, including the measurement error (ME), reconstructionerror or representation error

(RE) and the sparsity. Various regularization based methodsare proposed to enhance

the capability of sparse representation and more problem-specific recover algorithms

are developed to solve the ill-posed CS recover problem. However, most of these meth-

ods focus on the optimization of the well-posed problem but ignore the exploration and

modeling of the relationship among these key criteria.

It is expected that modeling is helpful to provide more insightful views about the

problem, which tries to interpret the problem from different angles. So, in this thesis,

we focus on both the modeling and optimization of CS and SC in 1-D signal and

image reconstruction problem. In addition, one typical SC based application, single

image superresolution (SISR) is investigated. Experimental results demonstrate that

through appropriate modeling and optimization, the quality of the reconstructed signals

is superior to that of the conventional optimization methods by testing both on the

benchmark and real-world database. In particular, we will present five aspects of works

in this thesis.

At first, dictionary learning (DL) based block compressive sensing (BCS) image

reconstruction, which aims to obtain both good sparse representation and reconstructed

image with high accuracy, is investigated. It is found that the recovered sub-block and

the sparse coefficients are no longer simply bridged by linear function, especially when
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independent measurement noise exists. In addition, the major task in BCS focuses on

optimizing the recovered sub-block. To accurately addressthe intrinsically mutual

influences between the two tasks and stress the importance ofmajor task, DL based

BCS is formulated as a bi-level optimization problem in which the upper level is to

approximate the reconstructed sub-block by minimizing theCS measurement error

(ME) and the lower level is to optimize the sparse coefficients represented by locally

learned dictionary by minimizing the sparsity of the image sub-block. Experimental

results demonstrate that the proposed bi-level modeling and optimization method is

effective and achieves higher performance on numerical and visual results than some

state-of-the-art single-level optimization BCS recover methods.

Secondly, we investigate the 1-D CS signal reconstruction under the noisy environ-

ment, which can be regarded as a problem of locating the nonzero entries of the signal.

In order to reduce the impact of the measurement noise and better locate the nonzero

entries, we proposed a two-phase algorithm which works in a coarse-to-refine manner.

The tradeoff between the ME and the sparsity is utilized, so in phase 1, a decomposition

based multi-objective evolutionary algorithm, MOEA/D, is applied to generate a group

of robust solutions. To remove the interruption of noise, the statistical features with

respect to each entry among these solutions are extracted and an initial set of nonzero

entries are determined by clustering technique. In phase 2,a forward-based selection

method is proposed to further update this set and locate the nonzero entries more pre-

cisely based on these features. At last, the magnitudes of the reconstructed signal are

obtained by the method of least squares. Experimental results on benchmark signals

as well as randomly-generated signals demonstrate that ourproposed method outper-

forms several state-of-the-art CS recover methods, achieving higher recover accuracy

and maintaining smaller sparsity.

In addition, we consider the problem of estimating the sparsity for image with

noise. We propose an adaptive sparsity estimation model which consists of an offline

training phase and online estimation phase. In the offline training, for each training

patch, MOEA/D is applied to obtain a group of Pareto solutions and determine a spar-

sity range by formulating SC as a multiobjective problem. By processing a reduced
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number of representative training patches, all the sparsity ranges are stored in a look-

up table (LUT) for reuse. In the online estimation phase, fora query patch, its sparsity

range is set to that of the most similar training patch. And the corresponding sparse rep-

resentation vector can be obtained by a sparsity-restricted greedy algorithm (SRGA)

constrained by this range. Thus, the sparsity is adaptivelydetermined by this sparse

representation vector within this range. By comparing with the state-of-the-art greedy

algorithms with fixed sparsity, experimental studies on benchmark dataset demonstrate

the efficacy of our proposed method.

Also, as one of the most representative application of SC, single image superres-

olution (SISR) is researched. In this work, we focus on using multiple dictionaries

to sparsely represent the pair of low resolution and high resolution patches, namely

multi-dictionary based SISR (MDSISR). As the computationalcost of MDSISR is very

heavy and usually time-consuming and resource-intensive,we proposed a complexity

reduction method via the phase congruency (PC) map, based on which the available LR

image patches are divided into important patches and unimportant patches. Then, the

corresponding important HR patches are reconstructed by multiple dictionary method

and the unimportant ones by single dictionary. The finalizedreconstructed HR image

is obtained by averaging the overlapped region between the adjacent patches. Experi-

mental results show that the proposed method can not only obtain competitive results

but also can reduce the computational complexity in the reconstruction process com-

pared with conventional MDSISR.

Last but not the least, for MDSISR, we propose a patch based evaluator to classify

the LR patches into three categories: significant, less-significant and smooth based on

the complexity of the contents. By incorporating the PC basedpatch evaluator (PCPE),

a flexible MDSISR framework is proposed, which further reduces the computational

cost in the reconstruction process. In this framework, multiple dictionaries are only

applied to scale up the significant patches to maintain high reconstruction accuracy.

Also, two simpler baseline approaches are used to reconstruct the less-significant and

smooth patches, respectively. Experimental studies on benchmark database demon-

strate that the proposed method can achieve competitive PSNR, SSIM, and FSIM with

some state-of-the-art SISR approaches. Besides, it can reduce the computational cost
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in conventional MDSISR significantly without much degradation in visual and numer-

ical results.
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Chapter 1

Introduction

1.1 Backgrounds and Overview

As an advanced signal acquisition and reconstruction framework, compressed sens-

ing (CS) (or compressive sensing) has been widely applied in various fields such as

imaging sciences, signal processing, image processing, computer vision and time se-

ries analysis. The advantages of CS over the traditional signal transmission are: 1) it

allows lower sampling rate for accurate reconstruction which breakthroughs the limi-

tation of Nyquist sampling theorem. 2) Opposite to the case in traditional acquisition

system, it provides more reasonable computing resources allocation, where naive linear

arithmetic encoding is simply performed together with sampling during the transmis-

sion and efficient algorithms which need a lot of computing efforts are executed in the

reconstruction process, shown in figure 1.

Nyquist SamplingNyquist Sampling EncodingEncoding DecodingDecoding

Transmission

CS sampling and 

encoding

CS sampling and 

encoding

Transmission

Reconstruction methodReconstruction method

Complex encoding method

Simple linear encoding 

with sampling

Simple Decoding Procedure

Efficient reconstruction 

with heavy computation

Figure 1.1: Comparison of signal acquisition and reconstruction between traditional
framework and CS
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Without loss of generality, CS recover is regarded as exactlyreconstructing a sparse

or compressive signalx ∈ RN from a small number of its highly incomplete linear

measurementsy ∈ RM.

y = Ax + n (1.1)

whereA ∈ RM×N (M < N) is the sensing matrix andn ∈ RM represents the additive

independent identically distributed (i.i.d) noise. It is observed that this is an under-

determined linear system and to solve this ill-posed problem, it is desirable to add

some constraints for (1.1). Under the assumption that most signals exhibit their sparsity

either in space domain or under other support basis, CS recover takes the sparsity of

signals into consideration. Thus, the recovery ofx can be obtained by solving the

following optimization problem.

min
x
||x||0 s.t. ||y − Ax||22 ≤ σ (1.2)

or

min
x
||y − Ax||22 s.t. ||x||0 ≤ τ (1.3)

where the positiveσ is the measurement error tolerance andτ denotes the sparsity

constraint.

The accurate and robust reconstruction can be guaranteed under Restricted Isome-

try Property (RIP) condition [1], which is described as follows:

(1− δK)||x||22 ≤ ||Ax||22 ≤ (1+ δK)||x||22 (1.4)

whereK denotes the sparsity ofx andδK is the RIP constant, 0< δK < 1.

To satisfy the RIP condition stated above, the sensing matrixcould be drawn from

certain distributions, e.g. the random normal distribution or a symmetric Bernoulli

distribution, with the inequality in (1.5).

M ≥ C · K log(N/K) (1.5)

The problems in (1.2) and (1.3) are NP-hard and difficult to solve. Traditional
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methods include the relaxation methods, the heuristic methods, such as greedy algo-

rithms. Relaxation methods convert the nonconvex optimization to convex optimiza-

tion under certain conditions.l1 norm is commonly used to replacel0 norm, which can

be solved by applying Basis Pursuit (BP), Basis Pursuit Denoising (BPDN), LASSO

and its variants. In [2] [3], minimizing thel 1
2

norm achieves rather competitive results

compared with the existingl1 norm relaxation methods. In addition, it is reported in [4]

and [5] that a good reconstruction can also be obtained by using derivable approxima-

tion functions instead ofl0 norm, which implicitly denotes the sparsity. The recon-

structed sparse signal can be easily solved by applying Karsh-Kuhn-Tucker (KKT)

condition. Heuristic methods, such as the greedy algorithms, work in an iterative way

that at each iteration, the component with the largest correlation with the current re-

construction residual is picked out as the nonzero entry. The algorithm will stop until

the reconstruction error threshold or the number of iterations is reached. The represen-

tatives of greedy algorithms solving the CS recover problem include Matching Pursuit

(MP) [6], Orthogonal Matching Pursuit (OMP) [7] and their variants [8] [9]. Although

these two categories of methods mentioned above can obtain satisfactory reconstruc-

tion results, there is a bottleneck that both of them have in common. It is noted that the

relaxation methods mainly focus on modeling the sparsity while the greedy algorithms

aim to utilize the measurement error (ME). In other words, both of them fail to take

the relationship between these two components into consideration.

CS reconstruction is often regarded as solving an optimization problem, however,

it is also worth to note that modeling the problem is equivalently important. In general,

modeling is the base of optimization, which reflects the consideration and interpreta-

tion about the underlying property and characteristics of the problem. Some pioneering

works have addressed on reformulating the CS reconstructionproblem by exploring

the relationship between different criteria, which outperform the traditional methods

significantly. In [10], jointly optimizing the ME and sparsity could significantly im-

prove the reconstruction quality under the noisy environment. During the optimization

process, these two components are updated alternatively and the method is proved to

converge to a stable and robust solution. This method is further extended and applied

in the application of electrical impedance tomography (EIT) [11], which achieves the
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state-of-the-art performance. In [12], the tradeoff between the ME and sparsity (in

terms ofl1 norm) is explored so that sparse reconstruction problem is modeled as a

multiobjective optimization problem (MOP). By using the multiobjective evolutionary

algorithm (MOEA) to solve the MOP, the reconstructed signalis obtained with high

accuracy. In [13], MOEA is applied in solving the large-scale sparse reconstruction

problems where minimizing the ME and sparsity (in terms ofl 1
2

norm) is modeled as

a MOP. Experimental results show that it outperforms the compared single objective

optimization methods.

We usex∗ andx to denote the reconstructed signal and original signal, respectively.

The inequality in (1.4) can be rewritten as:

(1− δ2K)||x − x∗||22 ≤ ||y − Ax∗||22 ≤ (1+ δ2K)||x − x∗||22 (1.6)

where theδ2K denotes the RIP constant with the sparsity equal to 2K. It is noticed

that this inequality connect the ME and reconstruction error (RE), ||x − x∗||22 and the

sparsity. Thus, to obtain the good quality reconstruction,it is desirable to well model

the relationship among these criteria.

In this thesis, we mainly aim to model the relationship amongthe criteria in CS re-

construction so that high quality reconstructed signal canbe achieved. In other words,

we try to investigate the CS reconstruction from different aspects by testing on the

imagery signal and 1D sparse signal.

Sparsity is an important criteria in CS, which has great impact on the reconstruc-

tion quality. Since not all the signals are sparse in the space domain, they should be

sparsely represented under certain basis. Compared with fixed representation basis,

such as DCT and wavelet, dictionary learning based sparse coding can provide more

compact and adaptive sparse representation. Recently, somenovel DL algorithms have

been developed for different applications. In [14], a discriminative sparse coding for

visual data with multiview features, which integrates the Hessian regularization, was

proposed to deal with image annotation problem. In [15], a Fisher discrimination cri-

terion based DL method was proposed for pattern classification, which considers both

the reconstruction error and sparse coefficients as the discriminative features. In [16],
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a two-stage DL algorithm for a coupled pair of low and high resolution dictionaries

was developed in image superresolution. Both the geometrical structures and nonlocal

similarity were taken into consideration to enhance the learning performance. In [17],

incremental learning framework was adopted to obtain a sparse representation-based

classifier for image segmentation, which shows its superiority to traditional learning

methods in different categories of images. However, there is little work addressing on

estimation of the sparsity for the image patches under noisyenvironment. So, in this

thesis, we also aim to develop a more robust sparsity estimation method by appropri-

ately modeling the SC problem.

In addition to the sparsity estimation, the sparse coding technique has been applied

in a variety of multimedia-related applications, among which image superresolution is

the most typical representative. Image super-resolution has attracted extensive atten-

tion from the researchers and practitioners in image processing area. To reduce the

computational complexity, one fast single super-resolution approach, anchored neigh-

borhood regression (ANR) [18] was proposed, where sparse dictionaries and regres-

sors were learned to be anchored to the atoms. In [19], an improved version of the

method in [18] was developed, which combined the advantagesof anchored neighbor-

hood regression and simple functions. Experimental results demonstrated it achieved

the state-of-the-art performances both in quality and efficiency. Other sparse represen-

tation based methods included 2D sparse representation [20], sparse support regres-

sion [21] and local rank representation [22]. Recently, varieties of machine learning

techniques were also applied in image super-resolution to achieve competitive results,

such as extreme learning [23] and deep learning [24]. In addition, the efficiency could

be improved by using GPU acceleration [25] and simple mapping functions [26]. Al-

though sparse coding based image superresolution have beenwell investigated, there

is still room for improvement. Considering both the effectiveness and efficiency, it is

also desirable to develop a novel superresolution method based on the sparse coding

technique. Thus, in this thesis, the typical application ofsparse coding, single image

superresolution (SISR), is investigated, which aims to improve both the efficacy and

the efficiency of the existing approaches.
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1.2 Thesis Objectives and Structure

This thesis aims to achieve better reconstruction quality by properly modeling and

optimizing the CS recover problem. In addition, the highly related technique, sparse

coding and its applications, are also investigated. Specifically, we have the following

objectives and the graphical illustration for the objectives and their relationships are

presented in 1.2.

• To figure out the CS recover problem in the noisy environment, and discover

new modeling and optimization method to improve the reconstruction quality

and maintain the sparsity. Our considerations include:

– The block CS reconstruction model, which is widely-used and promising

in imaging system.

– The sparse signal reconstruction approach from noisy measurements.

• To estimate the sparsity that can serve for the CS reconstruction and investi-

gate the applications of sparse coding in image reconstruction. Our considered

directions include:

– Sparsity estimation for image patches

– Multi-dictionary sparse coding based single-image superresolution

– A generalized single-image superesolution reconstruction model

The main structure of this thesis is organized as follows. Chapter 2∼ chapter 3

focus on the different modeling and optimization methods in CS reconstruction. In

chapter 2, we formulate the block CS as a bi-level optimization problem which aims to

optimize the sparse representation and the reconstructiondiscrepancy in an interactive

way. In chapter 3, we figure out that CS based sparse signal reconstruction can be

modeled as a problem of locating the nonzero entries and propose a two-phase evo-

lutionary approach to obtain a reconstructed signal with higher accuracy and better

sparsity. Chapter 4∼ chapter 6 focus on the modeling and optimization in SC and

its applications In chapter 4, we analyze the tradeoff between the sparsity and repre-

sentation power of SC and propose an adaptive sparsity estimation method based on
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Figure 1.2: The thesis’ objectives and their relationships

multiobjective optimization. In chapter 5, as a classical application of SC, for multi-

dictionary based single-image superresolution, we proposed a complexity reduction

method based on phase congruency. In chapter 6, the work in chapter 5 is extended

where a more flexible single-image superresolution framework is raised based on the

proposed phase congruency patch evaluator. The computational complexity is further

reduced significantly without much quality deterioration.Finally, we make the conclu-

sion of this thesis and give the future research directions.

1.3 List of Contributions

From the modeling and optimization in CS reconstruction, themain contributions are

listed as follows:

1. We formulate Dictionary learning (DL) based block compressive sensing (BCS)

as a bi-level optimization problem in which the upper level is to approximate the

reconstructed sub-block by minimizing the CS measurement discrepancy and the

lower level is to optimize the sparse coefficients represented by locally learned

dictionary by minimizing the sparsity of the image sub-block. The perceptual

nonlocal similarity (PNLS) is proposed as the constraint for the upper-level op-

timization, which can reduce the block artifact among the sub-blocks. We apply

a combination ofl1 and l2 norm minimization method to slove this formulated
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problem. Experimental results demonstrate that the proposed method is effec-

tive and achieves higher performance on numerical and visual results than some

state-of-the-art single-level optimization methods in BCS.

2. We formulate the CS based sparse signal reconstruction as aproblem of locating

the nonzero entries of the signal. In order to reduce the impact of noise and bet-

ter locate the nonzero entries, we proposed a two-phase algorithm which works

in a coarse-to-refine manner. In phase 1, a decomposition based multi-objective

evolutionary algorithm is applied to generate a group of robust solutions by op-

timizing l1 norm of the solutions. To remove the interruption of noise, the statis-

tical features with respect to each entry among these solutions are extracted and

an initial set of nonzero entries are determined by clustering technique. In phase

2, a forward-based selection method is proposed to further update this set and

locate the nonzero entries more precisely based on these features. Experimental

results on benchmark signals as well as randomly-generatedsignals demonstrate

that our proposed method outperforms the above methods, achieving higher re-

cover precision and maintaining smaller sparsity.

From the modeling and optimization in SC and its applications, the main contribu-

tions are listed as follows:

1. We propose an adaptive sparsity estimation model for image patches, which con-

sists of an offline training phase and online estimation phase. In offline training,

MOEA/D is applied to obtain a group of Pareto solutions and determine a spar-

sity range for the training patch. By processing a reduced number of representa-

tive training patches, all the sparsity ranges are stored ina look-up table (LUT)

for reuse. In the online estimation phase, for a query patch,its sparsity range

is set to that of the most similar training patch. And the corresponding sparse

representation vector can be obtained by a sparsity-restricted greedy algorithm

(SRGA) constrained by this range. Experimental studies on benchmark dataset

demonstrate that our proposed approach is able to achieve better sparse repre-

sentation quality in terms of PSNR and coding efficiency.

2. For multi-dictionary sparse coding (SC) based single-image based super-resolution
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(SISR), we proposed a complexity reduction method based on phase congruency

(PC). The PC map of the LR image is extracted and binarized to measure the im-

portance of the image patches. The important HR patches are reconstructed by

multi-dictionary based SC and the unimportant ones by single-dictionary based

SC. The finalized reconstructed HR image is obtained by averaging the over-

lapped region between the adjacent patches. Experimental results show that our

method can not only obtain competitive results but also can save much time and

reduce the computational complexity in the reconstructionprocess compared

with multi-dictionary sparse coding based SR method.

3. A flexible multi-dictionary based SISR (MDSISR) frameworkis proposed, which

reconstructs different patches by different approaches. A phase congruency (PC)

based patch evaluator (PCPE) is proposed to divide the LR patches into three

categories: significant, less-significant and smooth basedon the complexity of

the contents. In this framework, multiple dictionaries areonly applied to scale up

the significant patches to maintain high reconstruction accuracy. Also, two sim-

pler baseline approaches are used to reconstruct the less-significant and smooth

patches, respectively. Experimental studies on benchmarkdatabase demonstrate

that the proposed method can achieve competitive PSNR, SSIM,and FSIM with

some state-of-the-art SISR approaches. Besides, it can reduce the computational

cost in conventional MDSISR significantly without much degradation in visual

and numerical results.
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Chapter 2

Bilevel Optimization of Block

Compressive Sensing with

Perceptually Nonlocal Similarity

2.1 Introduction

Image reconstruction from measurements applying compressive sensing (CS) [27] has

attracted intensive interests from researchers. CS sampling theory breaks the limita-

tion for the requirement of the lowest sampling rate in traditional Nyquist sampling to

guarantee the accurate reconstruction, which has shown potential advantages in target

detection [28] [29] and signal recover [30]. It is stated in CSthat a sparse signal or

compressive one can be exactly reconstructed from a small number of its highly incom-

plete linear measurements as long as the Restricted IsometryProperty (RIP) condition

is satisfied [1]. Compared with frame-based CS method, block compressive sensing

(BCS) can significantly reduce the computational cost in the image reconstruction. The

concept of BCS is firstly raised and developed in the literature[31], where the image

is divided into several non-overlapped image sub-blocks with the same size and all

the sub-blocks are measured by the same sensing matrix and reconstructed block by

block. BCS introduces a conceptual framework which is more flexible and feasible for

paralleling implementation and better memory storage.

In BCS, sparse representation of the image sub-block is crucial for the quality of
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the reconstructed image. Other than exploring the transform coefficients by the fixed

transform basis, such as DCT, wavelet and curvelet transform, dictionary learning (DL)

based sparse representation has received great attention in signal processing in the past

decade. The advantage of learned dictionary over the specific transform basis lies in

the fact that DL provides an adaptive sparse transform by training from a group of

pre-collecting image instances.

The use of DL in BCS reconstruction aims to obtain both good sparse representa-

tion and reconstructed image with minimized CS measurement discrepancy. In [32],

after the initial reconstruction from CS measurements, the dictionary and the sparse co-

efficients of all the sub-blocks are updated simultaneously. After the post-processing

by averaging the overlapped portion of the adjacent sub-blocks, the finalized image is

obtained in an iterative way. In [33], an adaptive dictionary learned from the recon-

structed image itself is introduced to automatically approximate the sparse coefficients.

The sparse representation and the recovered image sub-block are integrated into one

optimization problem which is separated into three sub-problems solved sequentially.

In the literature, these methods mainly optimize the measurement discrepancy with

constrained sparsity, or optimize the sparse coefficients and dictionary under the mea-

surement constraint.

In [12], it is indicated that when independent noise exists,the reconstructed qual-

ity can not be improved but even degraded by only minimizing the CS measurement

error. Sometimes, it is obvious that a good estimation of thesparse coefficients does

not imply the optimal of the reconstructed image as the existence of noise may mis-

lead the underlying true sparsity. Therefore, the task of sub-block recover and sparse

representation can not be simply bridged by the linear relationship,x = Dα, where

x denotes an image sub-block,α is the sparse coefficients andD represents a dictio-

nary for sparse coding. To achieve a good reconstructed image, it is necessary to build

an explicit model for DL based BCS with measurement noise, which is able to better

describe the relationship between these two tasks.

In [12] [13], CS measurement error and sparsity are optimizedsimultaneously,

where the conflicts between the two objectives arise. The reconstruction task aims



2.1. INTRODUCTION 12

to minimize the measurement error while the sparse representation task has the ob-

jective of obtaining the sparsest representation. To solvethese two tasks effectively,

it is formulated as a multi-objective optimization problem. In DL based BCS, it is

suggested that the major task is to obtain the reconstructedsub-block and the sparse

representation error should be confined in certain range with respect to the recovered

sub-block. Considering the priority of subblock recover to sparse representation, a hi-

erarchical relationship containing a leader and a followercan be established for these

two tasks. This scenario may be modeled as a bilevel optimization problem consisting

of the upper-level subproblem and the lower-level subproblem [34] [35]. The upper

level (leader) is to minimize the CS measurement discrepancyof the reconstructed im-

age sub-block. And the lower level (follower) is to optimizethe sparse coefficients

represented by the local learned dictionary. The basic principle of bilevel optimiza-

tion is that bilevel optimization has a hierarchical structure, in which the leader aims

to solve the upper-level problem and the followers focus on lower-level optimization.

The leader and the follower have their respective objectives and the leader tries to in-

fluence the actions of the follower, which inspires the follower to optimize the leader’s

objective.

Bilevel optimization has been applied in some applications such as signal pro-

cessing [36], transportation network [37], environmentalengineering [38] and market-

ing [39]. Sometimes, the objectives of upper level and lowerlevel are conflicting. To

deal with this problem, it is necessary to relax the objectives or the constraints to cer-

tain tolerance to get the near-optimal solutions. In [40], the best compromise solution

that satisfies both the upper level and lower level optimization is obtained. The strat-

egy in solving this problem is described as: the upper level allows certain tolerance for

its objective and the lower level optimizes its objective when the tolerances are met.

Then, the follower in the lower level gives his solution to the leader and the leader

responses to update its objective if the original tolerances are not guaranteed. This

process is operated in an iterative way until the final solution is satisfied by both the

upper and lower level optimization. These ideas of interactive methods, which search

in the balanced space between the two levels, have been applied in solving the bilevel

optimization problem stated in [41] [42].
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For the bilevel optimization of BCS in our paper, some techniques are involved

in the reconstruction to make it more comprehensive and obtain the image with high

visual quality. In the upper level of our bi-level problem, aperceptually nonlocal simi-

larity (PNLS) constraint is introduced to reduce the block artifact between the adjacent

image sub-blocks which helps to improve the image quality ofperception and more

importantly, it provides some error tolerance for optimizing the objectives of upper

level and the reconstructed sub-block. In the lower level optimization, local dictionar-

ies trained from pre-defined number of image instances clusters are assigned to each

sub-block according to the Euclidean distances between thecluster center and the im-

age sub-block to be reconstructed in measurement space. Compared with training the

same number of dictionaries as the sub-blocks, it is more practical to apply the local

dictionary based on clustered samples, since it largely saves the computational cost

in the training process. The hierarchical decision relationship is illustrated in Figure

2.1, where the upper level includes reconstructing the sub-block by minimizing the CS

measurement discrepancy and the lower-level decision maker aims to optimize sparse

coefficients by minimizing the sparsity under the constraint of sparse representation

error in measurements space.

Leader: Sub-block reconstruction

Objective: Minimizing CS measurement error

Subject to: Nonlocal similarity constraint

Follower: Sparse coefficients

Objective: Minimizing the sparsity

Subject to: The sparse representation

error in measurement space related to the

local dictionary and reconstructed sub-

block

Reconstructed

sub-block
Estimated sparse

coefficients

Figure 2.1: Hierarchical structure of the decision makers in BCS
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It is desirable to develop efficient bilevel optimization techniques to solve the real-

world applications. Since the conflicts between the two objectives have been investi-

gated, in this paper, the interactive method which is regarded as the combination ofl1

andl2 norm minimization is proposed to find the optimal solution (the balanced solu-

tion between two levels) of the bilevel problem. The algorithm consists of two steps.

At the first step, the initial reconstruction is obtained by orthogonal matching pursuit

(OMP) [7] with the locally learned dictionaries. In the second step, the reconstructed

sub-block and sparse coefficients are updated alternatively byl2 andl1 norm minimiza-

tion to find the optimal solution that fit for the objectives ofboth levels. Experimental

simulations are conducted on images from benchmark datasetand the results demon-

strate that the proposed method outperforms some state-of-the-art BCS methods both

in visual quality and numerical metrics. In summary, the contributions of this paper

are three folds and listed as follows:

• DL based BCS with measurement noise is formulated as a bilevel optimization

problem which is able to explicitly describe the hierarchical relationship between

sub-block recover and sparse representation.

• A perceptually nonlocal similarity (PNLS) constraint is introduced to reduce the

block artifact between the adjacent image sub-blocks and improve the image

quality of visual perception.

• A combination ofl1 andl2 minimization method is proposed to solve the bilevel

problem efficiently, resulting in a better performance than some state-of-the-art

single-level BCS reconstruction methods.

The remainder of this chapter is organized as follows. Section 2.2 introduce the

basic framework of DL based BCS. In Section 2.3, the bilevel optimization of DL

based BCS is presented. The numerical and visual results on benchmark images are

shown in Section 2.4. Finally, the conclusion is made and future work is directed in

Section 2.5.
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2.2 Block compressive sensing and dictionary learning

2.2.1 Block compressive sensing

Block compressive sensing (BCS) [31] introduced an effective way for reducing com-

putational complexity in image reconstruction. The whole imageX is divided into a

certain number of non-overlapped image sub-blocks with size B × B and all the sub-

blocks share the same sampling matrixΦB. Let xi denote theith vectorized sub-block.

yi = ΦBxi + ni (2.1)

whereΦB ∈ RMB×B2
andni is the independent noise. In BCS, for simplicity of parallel

or distributed computation, the measurement matrixΦ can be described as a block

diagonal matrix.

Φ =



ΦB 0 · · · 0

0 ΦB · · · 0

...
. . .

...

0 · · · 0 ΦB



(2.2)

Due to the existence of differences between the sub-blocks,the local dictionary

trained for theith sub-blockxi is defined asDi ∈ RB2×LB, i = 1 . . . n, with B2 ≪ LB,

wheren denotes the total number of sub-blocks in imageX. xi = Diαi, whereαi

denotes the sparse coefficient vector ofxi sparsely represented byDi. Therefore, the

dictionary for the whole image is represented as a block diagonal matrix.

D =



D1 0 · · · 0

0 D2 · · · 0

...
. . .

...

0 · · · 0 Dn



(2.3)

By considering the sparsity constraint of sub-blockxi, the sparse coefficientsαi
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should be solved from the objective function in (2.4).

α̂i = arg min
αi

1
2
||yi −ΦBDiαi ||22 + µ||αi ||0 (2.4)

whereµ is a Lagrangian Multiplier and|| · ||0 denotesl0 norm of the objective. It is

noticed that the problem described in (2.4) is NP-hard and the optimal is often obtained

by solving the equivalent problem as follows.

α̂i = arg min
αi

1
2
||yi −ΦBDiαi ||22 + µ||αi ||1 (2.5)

where || · ||1 denotesl1 norm. As long as ˆαi is determined, the reconstructed sub-

block can be obtained bŷxi = Diα̂i. In (2.4) and (2.5), the single-level optimization

of BCS is presented. To solve the problem in (2.5), variousl1 minimization methods

can be applied such as LASSO [43] and its variant [44]. Greedyalgorithms such as

orthogonal matching pursuit (OMP) [7] and its variants regularized OMP [45], stage-

wise OMP [8] are also efficient for solving this problem. After all the sub-blocks

are reconstructed, the sub-block aggregation procedure combines all the reconstructed

sub-blocks together to form the entire imageX̂ in (2.6).

(X̂, α̂i) = arg min
X,αi

(
n∑

i=1

1
2
||Ri(Y) −ΦBRi(X)||22

+

n∑

i=1

µ||αi ||1), i = 1, . . . ,n (2.6)

where X is composed ofxi with ith column equal toxi,Y consists of the vectors

yi , i = 1, . . . ,n column by column andRi(·) denotes the operator which extracts the

ith column of the matrix. There are some issues to be discussedin the later subsec-

tions. For example, how to select the training samples to construct the training set and

the algorithm to train local dictionaries for different sub-blocks.

2.2.2 Local dictionary trained from clustered image patches

In (2.5), it is too complicated to train a local dictionaryDi for each sub-blockxi. In

BCS, image sub-blocks with different characteristics own different sparsities. It is
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trivial that similar sub-blocks share the similar sparsities. To distinguish the image

sub-blocks with different characteristics, clustering is commonly applied andsimilar

sub-blocks are grouped in each cluster. Learning a local dictionary from a cluster of

similar image samples has been proven to be efficient in image denoising [46] and

image superresolution reconstruction [47]. However, it has not been widely applied

in CS. In this paper, at first,K local dictionariesD j , j = 1 . . .K are trained fromK

clusters of image samples, respectively. Then the Euclidean distancesdj , j = 1 . . .K

between the sub-blockxi andK cluster centersC j , j = 1 . . .K in measurement space

are calculated since the inputxi is unknown but the measurement vectoryi is available.

Finally, the smallest distancedk, k ∈ {1,2, . . .K} is found and only one dictionaryDk is

assigned to reconstruct the sub-blockxi.

… ...

… ...

Sensing

Matrix

… ...1C 2C KC 1CM 2CM KCM

iy
ix

1D 2D … ...
KD

Image

Samples 1

Image

Samples 2

Image

Samples K
… ...

Image Samples

Clustering

Sub-samples

Training

Output

Calculate distance

MeasurementsInput

1d 2d … ...
Kd

kD

1 2min( , ... ),  {1,2,... }k Kd d d d k K

B

Figure 2.2: Procedure of selection of the local dictionaries trained from clustered
patches

Flow diagram of this procedure is shown in fig 2.2, whereCM j , j = 1 . . .K denotes

the cluster center in measurement space and are obtained byCM j = ΦBC j. In image

samples, all the image patches are vectorized and share the same size with the image

sub-block to be reconstructed. It is noticed that the part indotted line is implemented

offline and the local dictionaries are stored for the selection of different sub-blocks.
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Compared with trainingN dictionaries forN sub-blocks (whereN is the total number

of sub-blocks), onlyK dictionaries withN ≫ K are obtained from the clustered image

sample which greatly reduce the computational complexity in dictionary learning.

In addition, the learned dictionary from a particular groupof image samples has

been proved to be effective in many applications of image processing such as denois-

ing [46] and superresolution [47]. For BCS, there exist significant differences among

various image sub-blocks. For example, the sub-block whichmainly contains texture

pattern and the sub-block with smooth pattern should have different dictionaries for

sparse representation. The local dictionaries designed for different image sub-blocks

are able to capture the local features more precisely. In [48], local adaptively dictio-

nary for each sub-block is trained by collecting the similarsub-blocks from the training

samples which is able to achieve better sparse representation than the global dictionary.

Some details of dictionary learning can refer to [48] [49], where the most widely used

DL algorithm K-singular value decomposition (KSVD) is introduced. The graphi-

cal visualization of how frequently each local dictionary is used in reconstructing the

patches in each test image is shown in Fig. 2.3.

D1 (25%)

D2 (16%)

D3 (30%)

D4 (27%)

D5 (2%)

(a)

D1(5%)

D2(24%)

D3 (22%) D4 (19%)

D5 (31%)

(b)

D1 (19%)

D2 (28%)

D3 (25%)

D4 (18%)

D5 (10%)

(c)

Figure 2.3:K = 5 Test images (a) Lena (b) Barbara (c) Boats
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2.3 Bilevel optimization of dictionary learning based

BCS

In this section, bilevel optimization of dictionary learning based BCS (BCS-DL-BLO)

is introduced. At first, bilevel formulation of this problemis presented which is fol-

lowed by the proposed PNLS in reconstruction process. Then,the details of the pro-

posed method are given.

2.3.1 Bilevel Formulation

In general, sparse representation based CS reconstruction with measurement noise is

expressed as follows.

min
xi ,αi

||yi −ΦBxi ||22 + λ1||xi − Dkαi ||22 + λ2||αi ||1 (2.7)

To solvexi andαi, αi is firstly estimated andxi is updated givenαi. αi is usually

estimated by the similar patches ofxi in training set, however, in CS,xi is not available

except the measurementyi. To measure the similarity betweenxi and training patches

the Euclidean distance in measurement space is used as the metric. Therefore,αi is

obtained by solving the optimization problem:

min
αi

||yi −ΦBDkαi ||22 + λ2||αi ||1 (2.8)

By using the obtainedαi, xi can be updated by solving:

min
xi

||yi −ΦBxi ||22 + λ1||xi − Dkαi ||22 (2.9)

There are two disadvantages in this two-stage optimizationproblem: Firstly, since

the existence of measurement noise, the sparse representation error (SRE) in measure-

ment space||ΦBx̂i − ΦBDkαi ||22 is not equivalent to||yi − ΦBDkαi ||22. Therefore, an

accurate sparse representation ofαi is not reached, which influences the quality of the

reconstructed̂xi. Secondly, although the stated shortcoming above can be overcome

by alternative optimization approaches, the balance parameterλ1 andλ2 are decided
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largely by the preference of the decision maker and the recovered sub-block with good

quality is not guaranteed. The weighted sum form of the equation only aims to find a

balance among the three objectives without considering thepriority of the tasks.

It is obvious that when the measurement noise exists, the recovered sub-block and

sparse coefficients are no longer bridged by the linear functionxi = Dkαi. So it is

necessary to build an explicit model which better indicatesthe relationship between

the task of sparse representation and sub-block reconstruction.

Based on triangle inequality forl2 norm, the relationship among different errors is

described as follows.

||ΦBx̂i −ΦBDkα̂i ||2 ≤ ||yi −ΦBDkα̂i ||2 + ||yi −ΦBx̂i ||2 (2.10)

In (2.10), the first term denotes the sparse representation error in measurement

space, the second term is the measurement error determined by αi in BCS and the

third one is the CS measurement error related toxi. Under the noiseless condition,

the equal relationship is satisfied where all the three termsare equal to 0. However,

when the noise exists in the measurement space, we need to explore more from (2.10).

On one hand, if CS measurement error related toxi is minimized which is closely ap-

proaching to 0, (2.10) can be simplified as||ΦBx̂i −ΦBDkα̂i ||2 ≤ ||yi −ΦBDkα̂i ||2. This

expression indicates that the solution which minimizes thesparse representation error

in measurement space is guaranteed to reach the optimal thatminimizes the measure-

ment error related toαi. In other words, minimizing the first term in (2.10) is better

than only solving the minimum of the second term. On the otherhand, when the mea-

surement error with respect toαi is ǫs, ||ΦBx̂i − ΦBDkα̂i ||2 ≤ ǫs + ||yi − ΦBx̂i ||2. It is

noticed that when small measurement error related toxi, ǫm is obtained, the relation-

ship keeps the sparse representation errorǫd also accordingly small whereǫd < ǫs+ ǫm

holds. These two properties lead to substitutionyi with ΦBx̂i in sparse representation

to make some relaxation to this task.

min
αi

||αi ||1 s.t. ||ΦBx̂i −ΦBDkαi ||22 ≤ ǫ (2.11)
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In [12] and [13], it has been proved that, there is tradeoff relationship between spar-

sity and the measurement error (ME). Therefore, BCS reconstruction can be treated as

a multi-objective optimization problem, in which these twotasks need to be solved

simultaneously.

min{ f1, f2}

where f1 = ||yi −ΦBxi ||, f2 = ||αi ||1, s.t. ||ΦBx̂i −ΦBDkαi ||22 ≤ ǫ
(2.12)

Considering that the major task is to obtain the reconstructed sub-blockxi in f1

andαi can be determined by the constraint related toxi. Therefore, there is a hier-

archical relationship between these two tasks. DL based BCS can be formulated as a

bilevel optimization problem, in which the upper level (theleadar) is to optimize the

reconstructed sub-block and the lower-level (the follower) aims to optimize the sparse

representation.

The nonlocal similarity constraint which has the denoisingproperty is usually uti-

lized to make the reconstructed image more consistent. Compared with the filtering

method, NLS can preserve the features and avoid over-smoothness in some regions of

image. Since the pixels in the original image are not available, we need to calculate

nonlocal similarity constraint based on the estimated pixels. The estimated image can

be obtained byDkαi afterαi is obtained. To improve the visual perception quality

of the reconstructed image, a perceptually nonlocal similarity (PNLS) operator is pro-

posed to obtain the nonlocal constraint. By incorporating nonlocal similarity constraint

into the problem in (2.12), the bilevel optimization problem is expressed as follows.

min
xi

||yi −ΦBxi ||22

s.t. ||xi − vi ||22 ≤ ǫ1

vi = PNLS(Dkαi)

min
αi

||αi ||1 s.t.||ΦBxi −ΦBDkαi ||22≤ǫ2

(2.13)

wherevi denotes the nonlocal similarity constraint which is widelyused in image pro-

cessing and PNLS is the proposed operation which extracts the nonlocal similarity

constraint for image sub-block.
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To simplify the problem in (2.13), we put one constraint in the objective function.

Thus, the bilevel problem in (2.13) is rewritten as

min
xi

||yi −ΦBxi ||22 + λ||xi − vi ||22

s.t. vi = PNLS(Dkαi)

min
αi

||αi ||1 s.t.||ΦBxi −ΦBDkαi ||22≤ǫ2

(2.14)

whereλ is the weighting parameter.

The bilevel formulation not only considers the mutually influences between sparse

representation and sub-block recover, but also stress thatobtaining the recovered sub-

block is the major task in DL based BCS. In addition, the perceptually nonlocal sim-

ilarity is introduced into the model which makes the pixels more consistent and the

denoising property help to obtain the reconstructed image with better visual percep-

tion quality. All of these considerations help to generate better reconstructed image

compared with conventional single-level optimization problem.

2.3.2 PNLS operator

Algorithm 1: PNLS
Input:

The imageX l and its corresponding sub-blocks,xi , i = 1, . . . ,N;
The number of sub-blocks found to construct PNLS operator,Ns

Output:
The PNLS of sub-block,vi , i = 1, . . . ,N;

1: for all x i ∈ X l , i = 1 : N do
2: The nonlocal regionNLi of xi is located;
3: for m= 1 : Nsub do
4: The patcheszn

i ,n = 1, . . . ,Ns used to updatezm
i are determined by solving

(2.23);
5: The patchzm

i is updated by calculating (2.24) and (2.25).
6: end for
7: The PNLSvi of sub-blockxi is obtained by combining all the non-overlap

patcheszm
i together.

8: end for

The self-similarity between the pixels in nonlocal areas ofthe image has been

greatly explored in image processing [50] [51]. In this section, based on a visual
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perception metric-the structural similarity (SSIM)Index[52], the PNLS operator is in-

troduced.

The SSIM index is described in (2.15) which mainly consider three components of

the characteristics of image, the luminance distortion term, the contrast distortion term

and the structural distortion.

S S IM(x, y) = l(x, y)c(x, y)s(x, y) (2.15)

where

l(x, y) =
2x̄ȳ + c1

x̄2 + ȳ2 + c1
(2.16)

c(x, y) =
2sxsy + c2

s2
x + s2

y + c2
(2.17)

s(x, y) =
sx,y + c3

sxsy + c3
(2.18)

wherex andy are two compared images, ¯x andȳ are the mean values,s2
x ands2

y are the

variances ofx andy respectively, andsx,y is the covariance betweenx andy.

The output of SSIM is confined between 0 and 1. The greater SSIMis, the more

similarity gains. In [53], the mathematical properties of SSIM is analyzed and a special

metric is defined. In the case thatc3 = c2/2 in (2.18), the SSIM can be expressed as

S S IM(x, y) = S1(x, y)S2(x, y) (2.19)

where

S1(x, y) = l(x, y) =
2x̄ȳ + c1

x̄2 + ȳ2 + c1
(2.20)

S2(x, y) = c(x, y)s(x, y) =
2sxsy + c2

s2
x + s2

y + c2
(2.21)

According to [53], the two termsd1 =
√

1− S1 andd2 =
√

1− S2 are two metrics.

The special metricDmetric which is equivalent to SSIM is defined as follows.

Dmetric(x, y) =
√

d1(x, y)
2 + d2(x, y)

2 =
√

2− S1(x, y) − S2(x, y) (2.22)



2.3. BILEVEL OPTIMIZATION OF DICTIONARY LEARNING BASED BCS 24

When the nonlocal self-similarity between the pixels is considered,Dmetric is used

to measure the similarity between the different sub-blocks. The diagram of collecting

similar patches from nonlocal region to construct PNLS constraint is shown in fig 2.4.

current

sub-block

smaller patch

nonlocal region

similar patch

SSIM measure

Figure 2.4: Collecting similar patches from nonlocal region

In an imageX, each sub-blockxi , i = 1, . . . ,N is partitioned into smaller non-

overlap patcheszm
i ,m = 1, . . . ,Nsub with the size ofb × b. The nonlocal regionNLi

can be determined in [51]. InNLi of xi, Ns similar patcheszn
i , can be selected forzm

i

by minimizing the problem below.

arg min
{zn

i }

Ns∑

n=1

√
2− S1(zm

i , z
n
i ) − S2(zm

i , z
n
i ) (2.23)

whenzn
i ∈ NLi ,n = 1, . . . ,Ns for eachzm

i is obtained, thezm
i can be updated by the sum

weighted described as follows:

zm
i =

Ns∑

n=1

zn
i ωm,n,m= 1, . . . ,Nsub (2.24)

whereNsub is the number of non-overlap patches inxi. whereωm,n is determined by

the normalized variant ofDmetric.

ωi,k =
exp(−h

√
2− S1(zm

i , z
n
i ) − S2(zm

i , z
n
i ))∑

zn
i ∈NLi

exp(−h
√

2− S1(zm
i , z

n
i ) − S2(zm

i , z
n
i ))

(2.25)
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whereh > 0 is the scaling parameter. After obtaining all the updated patcheszm
i ,m =

1, . . . ,Nsub in sub-blockxi,the PNLS ofxi can be constructed by aggregating them

together. Therefore, the procedure of calculating PNLSvi , i = 1, . . . ,N for all the

sub-blocks in an image can be obtained in Algorithm 1.

2.3.3 Details of BCS-DL-BLO

To solve the bilevel optimization problem is of difficulty because of the non-convex

and non-differentiable properties in general [35]. In (2.14), the lowerlevel problem

is to optimize the sparse coefficient vectorαi under the estimated image sub-blockxi.

So an initial estimationx(0)
i is necessary to start the process. Afterαi is obtained,vi

is determined by the equality constraint in upper level optimization. Meanwhile, the

reconstructedxi in objective function of upper level optimization can be solved from

the terms ofl2 norm minimization. This basic flow enforces us to develop anl1 andl2

norm based alternative minimization to solve the bilevel problem.

The initialized solution ofαi is solved by OMP in (2.26) as follows. OMP can

provide a fast and promising solution for the bilevel optimization to start with. By

setting a proper sparsity for each sub-block, the initialized solutions of all the sub-

blocks can be obtained by OMP in a short time.

min
αi

µ||αi ||1 +
1
2
||yi −ΦBDkαi ||22 (2.26)

The upper level optimization of BCS-DL-BLO

Let t denote the index of iteration. Therefore in the upper level optimization, the

problem is written as

xt+1
i = arg min

xi

||yi −ΦBxi ||22 + λ||xi − vt
i ||22 (2.27)

To solve (2.27), we make Taylor expansion to the term of||yi −ΦBxi ||22 with respect

to the current pointxt
i .

||ΦBxi − yi ||22 = ||ΦBxt
i − yi ||22 + 2ΦT

B(ΦBxt
i − yi)(xi − xt

i) +
1
δ
||xi − xt

i ||22 (2.28)
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By substituting (2.28) into (2.27), thus the quadratic function can be obtained.

min
xi

||ΦBxt
i − yi ||22 + 2ΦT

B(ΦBxt
i − yi)(xi − xt

i) +
1
δ
||xi − xt

i ||22 + λ||xi − vt
i ||22 (2.29)

The closed-form solution of (2.29) is easily solved by leastsquares minimization

from (2.30).

(ΦT
B(ΦBxt

i − yi) +
1
δ

(xi − xt
i)) + λ(xi − vt

i) = 0 (2.30)

And the solutionxi is

xi = ((
1
δ
+ λ)I )−1(

xt
i

δ
+ λvt

i −ΦT
B(ΦBxt

i − yi)) (2.31)

whereI is identity matrix andδ is a positive parameter in Taylor expansion.

The lower level optimization of BCS-DL-BLO

The lower level problem can be solved by optimizing the following problem.

αt+1
i = min

αi

µ||αi ||1 +
1
2
||ΦBxt+1

i −ΦBDkαi ||22 (2.32)

Inspired by the fact that the iterativel1 minimization method [54] [55] is effec-

tive in solving the LASSO minimizer in (2.32). To obtain fastconvergence and good

estimation ofαi, the fast iterative soft thresholding algorithm [56] is adopted here.

During themth inner iteration in solvingαt+1
i in (2.32) ,αi is updated by

αm+1
i = T(αm

i +
pm− 1
pm+1

(αm
i −αm−1

i )) (2.33)

where the functionT(·) is defined byT(αi) = Sµ[αi + Φ
T
cs(ΦBxi − Φcsαi)] and let

Φcs = ΦBDk. The soft thresholding operatorSµ is defined as

(Sµ[x]) j =



xj − µsgn(xj), |xj | > µ

0, otherwise

(2.34)
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wherexj denotes thejth element in the vectorx. In (2.33), the adaptive stepsize is

updated bypm+1 =
1+
√

1+4(pk)2

2 with p0 = 1, the thresholdµ = max|ΦT
cs(yi − Φcsαi |,

where the operatormax(·) denotes the maximum of the values in a vector and to start

the algorithm, the initial solution in (2.33) is set as0.

The nonlocal similarity constraintvi is also updated during the iteration byvt
i =

PNLS(Dkα
t
i). Our proposed method is shown in Algorithm 2. The two variables in

the bi-level problem are solved alternatively based onl2 andl1 norm minimization. As

the sparse representation task in the lower level is relaxedto some extent, the optimal

which balances the measurement error and the sparse representation error is guaranteed

to be found. The method is terminated while the maximum number of iteration J is

reached.

Algorithm 2: Proposed BCS-DL-BLO
Input:

The BCS measurementyi , i = 1, . . . ,N;
The local dictionaries :Dk, k = 1, . . . ,K;
The maximum number of iterationJ;

Output:
Reconstructed sub-blocks,xt

i , i = 1, . . . ,N; Initialize the sparse coefficients
vectorsαi

1: for t = 1, . . . , J do
2: Update the nonlocal similarity constraint byvt

i = PNLS(Dkα
t
i);

3: Solve the upper level optimization (2.27) by (2.31);
4: Solve the lower level optimization by (2.33);
5: end for
6: Apply this procedure to obtain all the reconstructed sub-blocks.

2.4 Experimental Results and Discussion

To illustrate the effectiveness of our proposed BCS-DL-BLO, 23 benchmark natural

images with the size of 512× 512 are tested. Due to the space limitation, the results of

the selected eight representative images in figure 2.5 are presented. Some state-of-the-

art BCS methods including BCS-SPL-DWT [57], BCS-SPL-DDWT [57], YALL1 [58]

and NESTA [59] are used for comparison.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.5: Representative test images (a) Lena (b) Boats (c) Barbara (d) Pepper (e)
Goldhill (f) airplane (g) baboon (h) elaine

To verify the advantages of bilevel optimization, the single-level optimization prob-

lem in (2.7) which is solved by two-stage alternative optimization named BCS-DL is

also compared. The experimental results are measured by thepeak signal to noise

ratio (PSNR) and some state-of-the-art perceptual image quality assessment indexes

(IQA), such as SSIM, feature similarity (FSIM) [60] and biologically inspired feature

similarity (BIFS) [61].

2.4.1 Parameter setting

The training set consists ofLs samples (image patches ofB× B), which are randomly

extracted from 15 benchmark test images from USC-SIPI image database1. K clusters

of sampled patches are obtained by K-means clustering. Eachdictionary is trained

from respective group of sampled patches by KSVD. In our simulation, Ls = 20000,

K = 5, B = 16, b = 4 and the size of each local dictionaryDk is 256× 1200. In

PNLS, the size of nonlocal regionw×w is 33× 33 andNs = 16. In BCS-DL-BLO, the

maximum times of iterationJ = 5. The weighting parameter of PNLSλ is set 0.3. The

number of iterations in OMP for initialization is set to 5. For the compared methods,

1The database is available at http://sipi.usc.edu/database/database.php
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YALL1 2 and NESTA3 are used to reconstruct the non-overlapped sub-blocks of 16×16

in the image. In BCS-SPL-DWT and BCS-SPL-DDWT4, the sub-block size is set to

16× 16 for fairness of the comparison. In BCS-DL, for two balancingparameters,λ1

is set to 0.5 andλ2 = 0.1. All the experiments are implemented in 5 runs on Matlab

2013a and tested on the computer Core i7 3.4GHz with 8 GB RAM.

(a) YALL1 (b) BCS-SPL-DWT (c) BCS-SPL-DDWT

(d) BCS-DL (e) NESTA (f) BCS-DL-BLO

Figure 2.6: Reconstructed results of Boats when sampling rate0.1, (a)-(f)
PSNR/dB:22.46, 24.73, 25.19, 25.04, 25.28, 27.55.

2.4.2 Numerical and visual comparison with different methods

In order to validate the effectiveness of the proposed BCS-DL-BLO, the reconstructed

results under the sampling rate ranging from 0.1 to 0.5 are compared when the mea-

surement noise level is equal to 0.01, where the sampling rate is defined asγ = N/M.

Both the visual quality and the statistical results of different methods are given. The

Gaussian random measurement matrixΦB, which has been proved to be suitable for

2The code is available at http://www.caam.rice.edu/ optimization/L1/YALL1
3NESTA code can be downloaded from http://statweb.stanford.edu/ candes/nesta/
4The code of BCS-SPL is available at http://www.ece.msstate.edu/ fowler/BCSSPL/



2.4. EXPERIMENTAL RESULTS AND DISCUSSION 30

(a) YALL1 (b) BCS-SPL-DWT (c) BCS-SPL-DDWT

(d) BCS-DL (e) NESTA (f) BCS-DL-BLO

Figure 2.7: SSIM map of Reconstructed results of Boats sampling rate 0.1 (a)-(f)
SSIM: 0.7761, 0.7977, 0.8036, 0.7962, 0.8341, 0.8876.

different sparse representation basis to satisfy RIP and easy to implement [62] is used.

All the parameters in different methods are set where the best performances are ob-

tained.
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Image Method PSNR(dB) SSIM

Lena
lpNLS 36.51 0.9746

PNLS 36.47 0.9769

Barbara
lpNLS 27.79 0.9314

PNLS 28.85 0.9371

Boats
lpNLS 31.12 0.9268

PNLS 31.05 0.9296

Pepper
lpNLS 33.76 0.9658

PNLS 33.80 0.9752

Goldhill
lpNLS 30.78 0.9395

PNLS 30.84 0.9464

Table 2.4: PSNR and SSIM comparison oflpNLS and PNLS ,γ = 0.3

The results in figure 2.6 and figure 2.8 show that all the methods can recover the

general shape of the original image. However, the images recovered by YALL1, BCS-

SPL-DWT and BCS-SPL-DDWT are blurred. Although clearer reconstruction results

are obtained by BCS-DL and NESTA, the existence of block artifact degrades the vi-

sual quality of the recovered image. By comparison, the proposed BCS-DL-BLO not

only can well maintain the overall structure of the image, but also achieve effective per-

formance in block artifact reduction. The objects in images, for example the boat body

and mast in Boat and the hair in Lena, are not reconstructed effectively by BCS-DL

due to the intensive block artifact. Another reason lies in the fact that BCS-DL con-

siders sparse representation and minimizing the measurement as a whole, which fails

to explore the inter-relationship, resulting in either inaccurate reconstruction or sparse

coding. Although the filtering technique in BCS-SPL-DWT and BCS-SPL-DDWT

help to enhance the smoothness of the area across different sub-blocks, the accuracy

of the recovered structure shows great deficiency. Especially, the specific structures
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(a) YALL1 (b) BCS-SPL-DWT (c) BCS-SPL-DDWT

(d) BCS-DL (e) NESTA (f) BCS-DL-BLO

Figure 2.8: Reconstructed results of Lena when sampling rate0.3, (a)-(f)
PSNR/dB:30.43, 32.55, 33.16, 35.88, 33.13, 36.47.

(such as the shape of eyes and hair zone in Lena, the mast in Boat) are not recovered

accurately and the appearance of jagged zigzag on the edge also degrades the quality

of the reconstructed image. The proposed BCS-DL-BLO provides more smoothing

recovered image meanwhile maintains the structural features with high accuracy.

SSIM map is a reliable metric to validate the perceptual visual quality of the image.

All the pixels in reconstructed image are compared with those of original image and

SSIM values of each pair of pixels are computed and draw in a gray scale image.

The lighter the color of SSIM map is, the higher structural similarity the two images

have. In figures 2.7 and 2.9, SSIM maps [52] of the reconstructed results in figures

2.6 and 2.8 are presented, respectively. It is obvious that the proposed BCS-DL-BLO

outperforms the other methods both in global and local region in visual quality.

The numerical results given in Table 2.1, Table 2.2 and Table2.3 indicate that BCS-

DL-BLO outperforms the single-level reconstruction methods in terms of PSNR, FSIM

and BIFS for sampling rate ranging from 0.1 to 0.5. Whenγ = 0.1, BCS-DL-BLO

gains 0.4-2.5 dB higher PSNR than the best of the rest of methods for Lena, Barbara,
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Peppers, Boats and Goldhill. Whenγ = 0.3, it gains 0.3-0.65 dB higher PSNR than

the best of the rest of methods for Lena, Barbara, Peppers, Boats and Goldhill. It is

demonstrated that the hierarchical relationship between measurement error and sparse

representation error is properly modeled in a bilevel optimization problem which can

be effectively solved.

2.4.3 Effectiveness of PNLS

To investigate the performance of the proposed PNLS, the nonlocal similarity con-

straint based onlp, (p ≥ 1) norm distance metric (lpNLS) is used for comparison with

PNLS. lpNLS can be described as follows: For sub-blockxi and its corresponding

partitioned patcheszm
i , the similar patcheszn

i in NLi are selected by calculating the

expression as below.

S = ||zm
i − zn

i ||p (2.35)

(a) YALL1 (b) BCS-SPL-DWT (c) BCS-SPL-DDWT

(d) BCS-DL (e) NESTA (f) BCS-DL-BLO

Figure 2.9: SSIM map of Reconstructed results of Lena sampling rate 0.3 (a)-(f) SSIM:
0.9430, 0.9601, 0.9631, 0.9658, 0.9667, 0.9769.
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where the smallerS is, the higher similarity between the two patches. For fairness,

both the numbers of sub-blocks used for aggregation are set as 16 and in BCS-DL-

BLO, PNLS is replaced bylpNLS. The resultant PSNR and SSIM of the reconstructed

images are compared whenγ = 0.3, which are shown in Table 2.4.

In Table 2.4, althoughlpNLS is able to obtain higher PSNR compared with the

proposed PNLS in some cases, PNLS outperformslpNLS in SSIM for all the tested

images. The comparison reveals that the introduction of perceptual quality measure

into the nonlocal similarity optimizing progress can improve the image perceptual

quality of the reconstructed image. PNLS is effective and have the positive impact

on enhancing the perceptual quality of reconstructed image.

(a) lpNLS (b) PNLS

(c) lpNLS (d) PNLS

Figure 2.10: SSIM map of the reconstructed results of Barbarawhenγ = 0.3, where
(c) and (d) are the corresponding SSIM map of (a) and (b), respectively; (a) SSIM =
0.9314 (b) SSIM = 0.9371.

The visual results oflpNLS and PNLS are compared by SSIM map, figure 2.10
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compares the reconstructed results for Barbara which contains tremendous texture in-

formation. It is observed that the color of the SSIM map on theright is lighter than

the one on the left. However, the improvement is only moderate since the block arti-

fact still affects the visual quality. The reason is that complicated textures increase the

difficulty for recovering the original image precisely. The edges and boundary areas

among different structures are better preserved by PNLS. In addition,the improvement

in visual quality is also reflected in SSIM map, which indicates that the structural infor-

mation is well maintained by applying SSIM as the criterion to measure the nonlocal

similarity among different image patches.

2.4.4 Effect of the number of atoms in dictionary and the number

of dictionaries

The redundancy of the local dictionary has the effect on the sparse representation of

each sub-block, which further influences the quality of the reconstructed image. In

figure 2.11, PSNRs of the reconstructed image Barbara when the number of atoms in

dictionary is equal to 600,800,1000,1200,1400 and 1600 are given under the noise

level 0.01.
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Figure 2.11: PSNR of the reconstructed image Barbara vs number of atoms in local
dictionaries

Theoretically, larger number of atoms can help to improve the performances of

representation. However, more atoms also result in higher computational cost. So, it is

desirable to find the tradeoff. It is observed that the dictionary with 1200 atoms is able
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to achieve both good quality of reconstruction and result inless computational costs.

The reconstructed results under different number of dictionaries are also investi-

gated. In figure 2.12, the quality of the reconstructed imagebecomes better with the

increase of the number of local dictionaries, however, it isnoticed that the change of

PSNR becomes ignorable afterK = 5. The influence of the number of dictionaries

on the reconstructed results is less significant than that ofthe number of atoms in the

dictionary.

3 4 5 6 7 8
25

26

27

28

29

30

31

32
 PSNR vs number of dictionaries under different SR 

Number of dictionaries

P
S

N
R

/d
B

 

 

SR=0.1
SR=0.2
SR=0.3
SR=0.4
SR=0.5

Figure 2.12: PSNR of the reconstructed image Barbara vs number of dictionaries

2.4.5 Effect of the noise in measurement space

To test the influence of the noise on our proposed method, Gaussian noise with differ-

ent levels are added into the measurement space of image sub-blocks. Figure 2.13

shows PSNR of the reconstructed test image Barbara under whenSR is equal to

0.1,0.2,0.3,0.4 and 0.5. The noise level ranges from 0.01 to 0.05 with the interval

of 0.01. Robustness of BCS-DL-BLO to noise is demonstrated that with the increase

of the noise level, PSNR decreases slowly in a certain range and the trend remains

stable due to the denoising property of PNLS based on nonlocal means filtering.

2.4.6 Convergence analysis between single-level and bilevel opti-

mization

The convergence performance of BCS-DL-BLO is given in figure 2.14, where the root

mean square error (RMSE) between the reconstructed imageX̂ and original imageX

(RE) of Lena is recorded versus the iteration numbers when thesampling rate is 0.3 at
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Figure 2.13: PSNR of the reconstructed image Barbara under different measurement
noise levels

the noise level of 0.01. RMSE is defined as:

RMS E(X, X̂) =
1

√
m1m2

||X − X̂||2 (2.36)

wherem1 ×m2 denotes the image size. The measurement error (ME) versus iteration

number is also presented in terms of RMSERMS E(Y,ΦX̂). It is observed that RMSEs

tend to decrease dramatically at first then become stable with the iteration number

augmenting. In BCS-DL-BLO, the leader is to minimize the ME. Since the problem in

upper level is convex and nonnegative, the convergence is reached. For the lower level

problem, only the near-optimal or local optimal can be obtained and the parameters

from lower level have effect on optimizing the upper level. Therefore, by permitting

the tolerance in the constraint of lower level optimization, the ME is guaranteed to be

gradually smaller.

To illustrate the differences between the single-level in (2.8) and bilevel optimiza-

tion, the measurement error (ME) and sparse representationerror (SRE) in BCS-

DL-BLO and the ME in BCS-DL are given in terms of RMSE. The SRE in BCS-

DL-BLO is calculated byRMS E(ΦX̂,ΦDα̂) and the ME in BCS-DL is obtained by

RMS E(Y,ΦDα̂). The errors versus the iteration numbers for Lena when the sampling

rate is 0.3 and noise level 0.01 are presented in figure 2.15.

It is indicated that all the errors tend to be smaller with theiterative process contin-

ued. The ME in single level optimization keep lying between the other two errors (ME



2.4. EXPERIMENTAL RESULTS AND DISCUSSION 38

1 2 3 4 5
3.6

3.8

4

4.2

4.4

4.6

4.8

5

iteration number 

er
ro

rs
 in

 R
M

S
E

 

 

bi−level ME
bi−level RE

Figure 2.14: RMSE of the reconstructed image during the iterative process
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Figure 2.15: Errors comparison during the iterative process

in bi-level optimization and SRE in bi-level optimization).The bi-level optimization

achieves better ME than that of single level, as the SRE is relaxed to certain tolerance

which enlarges the searching scope of the feasible solutions. Although only the local

optimal is obtained, it is suggested that by considering thetwo objectives as a bilevel

optimization problem, better performance of the reconstructed image can be achieved.

The theoretical convergence analysis is still a challenge,as the nonconvexity of the

dictionary learning process and only the local optimal can be found in lower level

optimization.

2.4.7 Computational complexity analysis

The complexity of our method comes from four aspects: the clustered-based multiple

dictionaries training process, the computation of the PNLSconstraint, the upper level
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optimization problem and the lower level optimization problem.

In the clustered-based multiple dictionaries training process, for each dictionary,

the training process needsO
(
Ls

(
S2LB + 2B2LB

))
operations for each iteration, where

S denotes the predefined sparsity for the training samples. Inthe clustering process,

k-means method costsO
(
KlcB2Ls

)
, wherelc denotes the number of iterations. So the

total computational complexity in DL is

O
(
TiterLs

(
S2LB + 2B2LB

)
+ KlcB2Ls

)
, whereTiter denotes the total number of itera-

tions in DL.

To obtain PNLS constraint for sub-blockxi , the computational complexity is cal-

culated as follows: each sub-block is divided into non-overlapped smaller patches with

the size ofb × b, therefore the nonlocal similarity constraint for each patch costs

O
(⌊
w2

b2

⌋
× 4b2 + Ns× b2

)
, wherew denotes the width of nonlocal searching window

(including non-overlapped patches) andNs is the number of patches involved in com-

puting the perceptually nonlocal similarity. There are totally
⌊

B2

b2

⌋
patches in one sub-

block, so the computational complexity for each sub-block isO
(⌊

B2

b2

⌋ (⌊
w2

b2

⌋
× 4b2 + Ns× b2

))
.

For each sub-block, the cost of sparse coding in the lower level optimization prob-

lem isO
(
2B4

)
.

The cost of higher level optimization problem is equal to

O
(
mB2 + B4 +

⌊
B2

b2

⌋ (⌊
w2

b2

⌋
× 4b2 + Ns× b2

))
. The upper-level and low-level problems

are solved alternatively. SupposeJ is the total number of outer loops in our proposed

method. The cost for each sub-block is

O
(
J
(
mB2 + 3B4 +

⌊
B2

b2

⌋ (⌊
w2

b2

⌋
× 4b2 + Ns× b2

)))
.

The reconstruction for each sub-block is more time-consuming than other methods.

In BCS, the running time can be reduced by some parallel implementations such as

GPU acceleration. For KSVD and OMP used in our offline DL process, some efficient

implementations described in [63] can also be applied.
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2.5 Conclusion

This chapter focused on bilevel optimization in dictionarylearning based BCS. The

bilevel formulation of the problem is described and the hierarchical relationship be-

tween optimizing the measurement error and sparse representation is formulated. A

perceptual nonlocal similarity (PNLS) based on SSIM is introduced to reduce the block

artifact between the adjacent sub-blocks and utilize the pixel similarity in nonlocal re-

gion. Moreover, a combination ofl1 norm andl2 norm minimization method is pro-

posed to solve the bi-level optimization problem. The experimental simulations are

tested on images in benchmark dataset and the results show that the proposed method

outperforms some state-of-the-art methods both in numerical and visual results.
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Image Method γ = 0.1 γ = 0.2 γ = 0.3 γ = 0.4 γ = 0.5

Lena

YALL1 [58] 26.32 28.68 30.43 32.25 33.81

BCS-SPL-DWT [57] 27.36 30.38 32.55 34.30 35.91

BCS-SPL-DDWT [57] 27.79 30.96 33.16 34.92 36.55

BCS-DL(single-level) 31.21 33.84 35.88 36.58 37.01

NESTA [59] 29.05 31.28 33.98 34.81 35.85

BCS-DL-BLO 31.66 34.40 36.47 37.08 37.27

Barbara

YALL1 20.45 22.71 24.29 25.38 26.64

BCS-SPL-DWT 22.34 23.59 24.79 26.06 27.62

BCS-SPL-DDWT 22.63 23.93 25.36 26.97 28.70

BCS-DL(single-level) 25.02 27.24 28.20 29.44 31.22

NESTA 23.78 25.87 26.54 27.16 28.57

BCS-DL-BLO 25.55 27.89 28.85 30.05 31.63

Boats

YALL1 22.46 25.73 27.58 29.77 30.62

BCS-SPL-DWT 24.73 27.32 29.25 30.83 32.34

BCS-SPL-DDWT 25.19 27.75 29.51 31.09 32.58

BCS-DL(single-level) 25.04 28.95 30.77 31.91 33.04

NESTA 25.28 27.89 30.43 31.78 32.33

BCS-DL-BLO 27.55 29.41 31.05 32.17 33.72

Pepper

YALL1 25.64 27.65 29.94 31.51 33.76

BCS-SPL-DWT 27.94 31.23 33.12 34.47 35.70

BCS-SPL-DDWT 29.55 31.82 33.62 34.35 35.62

BCS-DL(single-level) 30.21 32.26 33.32 34.87 35.69

NESTA 29.85 31.79 33.44 34.82 35.30

BCS-DL-BLO 30.94 32.78 33.80 35.13 35.95

Goldhill

YALL1 24.25 26.55 27.82 29.67 30.29

BCS-SPL-DWT 26.69 28.55 30.10 31.41 32.74

BCS-SPL-DDWT 26.91 28.91 30.37 31.71 33.06

BCS-DL(single-level) 28.13 28.82 30.46 32.25 33.14

NESTA 27.39 28.57 29.76 31.86 32.45

BCS-DL-BLO 28.81 29.03 30.84 32.56 33.55

Airplane

YALL1 25.41 27.90 30.38 32.32 34.07

BCS-SPL-DWT 25.04 28.33 30.94 33.07 35.05

BCS-SPL-DDWT 25.34 28.75 31.43 33.59 35.61

BCS-DL(single-level) 27.98 30.56 31.80 33.56 35.40

NESTA 26.70 29.60 31.59 32.82 35.00

BCS-DL-BLO 28.62 30.71 32.63 34.21 36.23

Baboon

YALL1 20.18 21.04 22.15 23.29 24.41

BCS-SPL-DWT 20.37 21.55 22.62 23.63 24.71

BCS-SPL-DDWT 20.69 21.83 22.90 23.94 25.06

BCS-DL(single-level) 20.59 21.93 23.49 24.81 26.08

NESTA 20.21 21.72 23.19 24.10 25.75

BCS-DL-BLO 21.05 22.23 24.17 25.21 26.25

Elaine

YALL1 28.79 30.75 31.97 32.97 33.96

BCS-SPL-DWT 29.34 31.19 32.30 33.20 34.11

BCS-SPL-DDWT 29.68 31.52 32.64 33.55 34.47

BCS-DL(single-level) 30.77 31.87 32.50 33.81 34.12

NESTA 30.30 31.64 32.32 33.62 34.45

BCS-DL-BLO 31.15 31.98 32.85 34.05 34.43

Table 2.1: PSNR/dB statistical results of reconstructed images.
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Image Method γ = 0.1 γ = 0.2 γ = 0.3 γ = 0.4 γ = 0.5

Lena

YALL1 [58] 0.9234 0.9585 0.9743 0.9834 0.9890

BCS-SPL-DWT [57] 0.9292 0.9639 0.9783 0.9863 0.9910

BCS-SPL-DDWT [57] 0.9330 0.9662 0.9796 0.9870 0.9915

BCS-DL(single-level) 0.9633 0.9851 0.9922 0.9933 0.9944

NESTA [59] 0.9455 0.9726 0.9824 0.9888 0.9922

Proposed method 0.9737 0.9888 0.9938 0.9945 0.9949

Barbara

YALL1 0.8726 0.9124 0.9370 0.9537 0.9668

BCS-SPL-DWT 0.8831 0.9186 0.9390 0.9557 0.9672

BCS-SPL-DDWT 0.8832 0.9232 0.9430 0.9571 0.9679

BCS-DL(single-level) 0.8882 0.9320 0.9563 0.9617 0.9704

NESTA 0.8789 0.9214 0.9427 0.9584 0.9687

Proposed method 0.8947 0.9374 0.9581 0.9634 0.9711

Boats

YALL1 0.8596 0.9161 0.9451 0.9638 0.9756

BCS-SPL-DWT 0.8726 0.9283 0.9550 0.9709 0.9807

BCS-SPL-DDWT 0.8737 0.9269 0.9537 0.9699 0.9799

BCS-DL(single-level) 0.8997 0.9413 0.9701 0.9811 0.9825

NESTA 0.8846 0.9328 0.9621 0.9795 0.9811

Proposed method 0.9328 0.9580 0.9742 0.9825 0.9857

Pepper

YALL1 0.9284 0.9588 0.9733 0.9821 0.9892

BCS-SPL-DWT 0.9324 0.9646 0.9774 0.9846 0.9907

BCS-SPL-DDWT 0.9330 0.9662 0.9796 0.9870 0.9915

BCS-DL(single-level) 0.9625 0.9814 0.9845 0.9905 0.9918

NESTA 0.9466 0.9720 0.9822 0.9901 0.9917

Proposed method 0.9707 0.9865 0.9903 0.9912 0.9921

Goldhill

YALL1 0.8865 0.9206 0.9486 0.9588 0.9751

BCS-SPL-DWT 0.8927 0.9365 0.9588 0.9725 0.9815

BCS-SPL-DDWT 0.8943 0.9372 0.9586 0.9721 0.9811

BCS-DL(single-level) 0.9364 0.9578 0.9731 0.9832 0.9893

NESTA 0.9228 0.9464 0.9670 0.9733 0.9882

Proposed method 0.9522 0.9618 0.9753 0.9859 0.9904

Airplane

YALL1 0.9215 0.9484 0.9685 0.9813 0.9853

BCS-SPL-DWT 0.9277 0.9531 0.9736 0.9845 0.9896

BCS-SPL-DDWT 0.9323 0.9597 0.9778 0.9882 0.9916

BCS-DL(single-level) 0.9416 0.9683 0.9842 0.9920 0.9934

NESTA 0.9386 0.9633 0.9807 0.9894 0.9922

Proposed method 0.9475 0.9734 0.9893 0.9924 0.9938

Baboon

YALL1 0.6721 0.7662 0.8243 0.8835 0.9255

BCS-SPL-DWT 0.6938 0.7743 0.8411 0.8873 0.9282

BCS-SPL-DDWT 0.7233 0.7791 0.8463 0.8927 0.9316

BCS-DL(single-level) 0.7464 0.7925 0.8753 0.9237 0.9427

NESTA 0.7342 0.7862 0.8602 0.9104 0.9362

Proposed method 0.7635 0.8158 0.8727 0.9248 0.9440

Elaine

YALL1 0.9312 0.9525 0.9634 0.9751 0.9816

BCS-SPL-DWT 0.9356 0.9567 0.9671 0.9773 0.9848

BCS-SPL-DDWT 0.9384 0.9592 0.9693 0.9802 0.9884

BCS-DL(single-level) 0.9524 0.9725 0.9813 0.9895 0.9915

NESTA 0.9472 0.9633 0.9746 0.9862 0.9904

Proposed method 0.9651 0.9739 0.9837 0.9903 0.9918

Table 2.2: FSIM statistical results of reconstructed images.
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Image Method γ = 0.1 γ = 0.2 γ = 0.3 γ = 0.4 γ = 0.5

Lena

YALL1 [58] 0.9083 0.9399 0.9554 0.9640 0.9840

BCS-SPL-DWT [57] 0.9123 0.9454 0.9606 0.9826 0.9833

BCS-SPL-DDWT [57] 0.9176 0.9590 0.9693 0.9810 0.9831

BCS-DL(single-level) 0.9437 0.9799 0.9786 0.9851 0.9816

NESTA [59] 0.9433 0.9569 0.9629 0.9821 0.9764

Proposed method 0.9658 0.9786 0.9813 0.9876 0.9893

Barbara

YALL1 0.8628 0.9011 0.9220 0.9396 0.9499

BCS-SPL-DWT 0.8779 0.9049 0.9225 0.9521 0.9524

BCS-SPL-DDWT 0.8825 0.9214 0.9274 0.9467 0.9515

BCS-DL(single-level) 0.8687 0.9145 0.9525 0.9558 0.9668

NESTA 0.8644 0.9025 0.9341 0.9491 0.9674

Proposed method 0.8917 0.9355 0.9578 0.9619 0.9689

Boats

YALL1 0.8566 0.8992 0.9386 0.9595 0.9616

BCS-SPL-DWT 0.8585 0.9101 0.9523 0.9709 0.9785

BCS-SPL-DDWT 0.8661 0.9267 0.9447 0.9518 0.9780

BCS-DL(single-level) 0.8982 0.9308 0.9587 0.9675 0.9705

NESTA 0.8764 0.9198 0.9463 0.9692 0.9649

Proposed method 0.9299 0.9503 0.9658 0.9721 0.9794

Pepper

YALL1 0.9124 0.9458 0.9626 0.9800 0.9874

BCS-SPL-DWT 0.9138 0.9493 0.9589 0.9647 0.9761

BCS-SPL-DDWT 0.9329 0.9547 0.9616 0.9798 0.9734

BCS-DL(single-level) 0.9495 0.9688 0.9736 0.9780 0.9828

NESTA 0.9330 0.9664 0.9642 0.9822 0.9863

Proposed method 0.9656 0.9697 0.9793 0.9840 0.9873

Goldhill

YALL1 0.8696 0.9121 0.9324 0.9479 0.9605

BCS-SPL-DWT 0.8868 0.9239 0.9521 0.9623 0.9807

BCS-SPL-DDWT 0.8938 0.9205 0.9540 0.9672 0.9726

BCS-DL(single-level) 0.9345 0.9524 0.9567 0.9823 0.9785

NESTA 0.9068 0.9384 0.9600 0.9565 0.9691

Proposed method 0.9380 0.9537 0.9720 0.9849 0.9862

Airplane

YALL1 0.9089 0.9327 0.9596 0.9627 0.9730

BCS-SPL-DWT 0.9214 0.9406 0.9718 0.9654 0.9739

BCS-SPL-DDWT 0.9131 0.9432 0.9629 0.9746 0.9722

BCS-DL(single-level) 0.9316 0.9676 0.9835 0.9748 0.9817

NESTA 0.9238 0.9552 0.9721 0.9706 0.9766

Proposed method 0.9472 0.9684 0.9886 0.9788 0.9792

Baboon

YALL1 0.6600 0.7566 0.8048 0.8652 0.9125

BCS-SPL-DWT 0.6938 0.7743 0.8411 0.8873 0.9282

BCS-SPL-DDWT 0.7072 0.7735 0.8281 0.8750 0.9128

BCS-DL(single-level) 0.7333 0.7805 0.8676 0.9053 0.9320

NESTA 0.7166 0.7857 0.8425 0.9044 0.9282

Proposed method 0.7455 0.8127 0.8676 0.9233 0.9306

Elaine

YALL1 0.9282 0.9358 0.9452 0.9598 0.9728

BCS-SPL-DWT 0.9317 0.9528 0.9592 0.9756 0.9821

BCS-SPL-DDWT 0.9226 0.9426 0.9613 0.9656 0.9796

BCS-DL(single-level) 0.9512 0.9657 0.9688 0.9805 0.9835

NESTA 0.9394 0.9499 0.9632 0.9732 0.9825

Proposed method 0.9591 0.9660 0.9683 0.9809 0.9838

Table 2.3: BIFS statistical results of reconstructed images.
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Chapter 3

A Two-phase Evolutionary Approach

for Compressive Sensing

Reconstruction

3.1 Introduction

The well-known compressive sensing (CS) [27] sampling process in signal processing

can be described as follows:

y = Ax + n (3.1)

whereA ∈ RM×N (M < N) is the sensing matrix,x ∈ RN is the signal transmitted

through the sensing matrix,y ∈ RM denotes the measurement vector andn ∈ RM

represents the additive independent identically distributed (i.d.d) noise.

GivenA, to recoverx from y, the sparsity of the signal, which denotes the number

of nonzero entries in the signal (or signal represented in the specific domain) mea-

sured by||x||0 or ||x||1 is necessarily exploited and the measurement error,||y − Ax||22,

is minimized to solve the under-determined linear system in(3.1). CS sampling has

been widely used in signal processing [64], wireless network [65] and image restora-

tion [66], where the dimension of the signal for transmission is largely reduced.

There exists two mainstream recover methods, greedy algorithms and convex re-

laxation methods. Greedy algorithms, such as orthogonal matching pursuit (OMP) [7]
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and its variants aim to find all the nonzero entries, in which the entry with the maxi-

mum greedy function value is selected and added into the set of nonzero entries (active

set) at each iteration. Convex relaxation methods such as basis pursuit denoising [67],

LASSO [43] and its variants, solvel1 norm minimization instead ofl0 norm which is

an NP-hard problem.

Greedy algorithms usually perform effectively as long as the set of nonzero entries

(namely active set) are identified correctly. However, in the presence of measurement

noise, all the entries are interrupted and some zero entriesare usually mistreated as

the nonzero ones. The exploration of the nonzero entries is conducted as a full search

among all the interrupted entries at each iteration which increases the sparsity dramat-

ically. Besides, the forward-based search brings about the problem that an incorrect

selection of nonzero entry at an earlier iteration influences the results of selection in the

upcoming iteration, which may cause quality degradation ofthe recovered signal. In

addition, the cost function in conventional methods is onlyrelated to the magnitudes

of the signal ignoring the features of sparse signals. In order to improve the recon-

struction quality, it is very critical to find the set of nonzero entries as accurately as

possible under the noisy environment and introduce a more suitable and discriminative

cost function to distinguish the nonzero entries from zero ones.

Compared with greedy algorithms, convex relaxation methodshave better toler-

ance to the existence of noise. For example, basis pursuit denoising is an effective

algorithm to deal with noise by minimizing the objective function which combines the

measurement error and||x||1 by Lagrangian multiplier. However, it is a thorny problem

that the quality of signal reconstruction is very sensitiveto the choice of Lagrangian

parameter. To reduce the impact of noise, the idea of utilizing the denoising property

of l1 norm optimization motivates us to propose a two-phase algorithm which works

in a coarse-to-refine manner to locate the nonzero more precisely and obtain better

reconstruction quality. In phase 1, a certain number of candidate nonzero entries are

identified from the solutions obtained byl1 norm minimization, which removes some

interrupted zero entries and shrinks the scope of candidateentries. This can be re-

garded as a backward-based selection. In phase 2, based on the idea of forward-based

selection, the active set is further selected out of these candidates. The combination
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of both directed searches takes advantages ofl1 norm minimization and overcomes the

shortcomings of conventional greedy algorithms.

There are two issues to be addressed in phase 1. First, it is suggested to use the

information from multiple solutions rather than one solution. On one hand, the statis-

tical analysis on these solutions provides more reliable and insightful observation on

determining the candidate nonzero entries; on the other hand, in l1 norm optimization,

the reconstruction accuracy is very sensitive to the choiceof Lagrangian parameter and

setting a proper value to achieve high reconstruction quality is of great difficulty. Re-

cently, the intrinsic tradeoff relationship between the measurement error and sparsity

(l1 norm) is investigated in [10] and described as follows: the requirement of small

sparsity of signal and high reconstruction precision are conflicting with each other;

small l1 norm maintains a small sparsity, however may lead to the increase in the mea-

surement error. So, in this paper, CS reconstruction can be treated as a multiobjective

optimization problem (MOP), where the measurement error and ||x||1 are minimized

simultaneously as shown in (3.2).

minF(x) = min{||x||1, ||y − Ax||22} (3.2)

Multiobjective evolutionary algorithms (MOEAs) [68–70] have been widely applied

in solving multiobjective optimization problems (MOPs) [71–74]. The advantage of

using MOEAs lies in the fact that they are able to generate multiple solutions whose

objectives are presented in a monotone order in a single run,which can provide more

regular and consistent information and better represent the tradeoff relationship. In

addition, evolutionary algorithm is more robust to noise, which usually provides better

solutions than conventionall1 minimization method (presented in section 3.4.3). The

decomposition based multiobjective evolutionary algorithm (MOEA), MOEA/D, per-

forms rather competitive in obtaining good-quality Paretosolutions [75–77]. Besides,

for our problem, the decomposed subproblems have the same objective function with

that of its single-objective formulation, which intrinsically better described the rela-

tionship between the two objectives. Therefore, in this paper, MOEA/D is applied to

generate a group of Pareto optimal solutions after a certainnumber of generations.
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The second concern is, given a group of solutions, how to determine the candidate

nonzero entries. The statistical feature of the solutions in MOEAs plays an important

role, which leads to insightful and profound understandingof the relationship between

objectives, variables and constraints. In [78], the neighborhood size of MOEA/D is

automatically selected from some predefined values based onthe probability deter-

mined by the number of generated improved solutions in the past generations. The

online self-adaption based on statistical results helps MOEA/D perform better than the

original version. In [79], the higher-level (from the wholePareto front) and low-level

(from preferred region of Pareto front) features are extracted and data mining tech-

nique is applied to find the correlation between the variables, objective functions and

constraints. The obtained rules can be generalized to select the solutions which satisfy

the preference of decision makers. In this paper, we consider two statistical features

for each entry: the appearance probability as a nonzero entry and magnitude variance

across different solutions. Then, according to these two criteria, a hierarchical cut-off

and combination strategy based on clustering is proposed todivide the entries into dif-

ferent categories: important, contributive and ignorable. By discarding the ignorable

entries, the candidate nonzero entries are only composed ofimportant and contributive

ones, the number of which is much smaller than that of all the entries.

Due to the randomness of the genetic operators evolutionaryalgorithms and the

interference from the additive noise, some zero entries maybe mistreated as the can-

didates. Therefore, in phase 2, it is necessary to further select the active set out of

these candidates. To overcome the shortcomings of conventional greedy algorithms,

a probability based greedy randomized adaptive search procedure (PGRASP) is pro-

posed which considers appearance probability of the entry in the cost function. This

method mainly benefits from two aspects. On one hand, it provides a subset of can-

didates whose function values lie in a certain range (not allthe candidates) at each

iteration. This scheme guarantees that the second ’best’ one, the third ’best’ one and

so forth also have opportunities to be selected, which is more flexible and able to gener-

ate more possible solutions. On the other hand, with the helpof appearance probability

integrated into the cost function, the selection is conducted with more discriminative

power. By defining a proper neighborhood, the local search procedure is performed
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to replace the selected entry in the active set if better entry can be found, which helps

to find out the nonzero entries more accurately. In addition,by initializing the active

set as the set of all the important entries, the iterative times in the reconstruction are

significantly reduced. After obtaining the active set, the magnitudes of the signal can

be calculated by least squares method.

Regarding the combination of these two phases, our proposed method for CS recon-

struction is named as MOEA/D-PGRASP. Experimental results on benchmark signals

and randomly-generated signals demonstrate that the proposed algorithm outperforms

state-of-the-art CS reconstruction methods in SNR (signal-to-noise ratio) meanwhile

maintaining smaller sparsity.

The rest of this chapter is organized as follows. In section 3.2, the related works

and background are presented. The proposed algorithm is introduced in section 3.3.

Experimental results are given in section 3.4. The conclusion is finally made in section

3.5.

3.2 Related Works and Background

3.2.1 Related Works

It is noticeable that there exists some other works on applying MOEAs to solve sparse

reconstruction problem. In [12], the author proposed a dominance-based MOEA to

minimize the measurement error andl0 norm of the signal to generate Pareto optimal

solutions. The solution on the knee region of Pareto front (PF) [80,81] is selected as the

optimal solution. In [13], iterative threshold algorithmsbased onl0 norm andl 1
2

norm

regularization are proposed and integrated into the framework of the decomposition

based MOEA [74]. Weak dominance relationship among the Pareto objective vectors

are investigated and the threshold sparsity is determined along thel0 norm axis with

which the optimal solution is selected. The major difference between these works and

our proposed method is the task of MOEAs. In our method, MOEAscan be viewed

as a training process which aims to provide multiple Pareto solutions but not focus on

exploring the best solutions for this problem. So, they are generated without integrating
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other techniques or domain knowledge into the evolutionaryalgorithm, which is more

general and feasible to extend to other similar problems.

3.2.2 Background

Multiobjective optimization problem (MOP)

To introduce some definitions, we consider the following MOP:

min F(x) = ( f1(x), . . . , fm(x))

sub ject to x∈ S
(3.3)

wherem is the number of objectives. We have each objectiveft : Rn→ R, t = 1, . . . ,m.

The solutionx in the decision spaceS takes the form (x1, . . . , xn)T . The objective vector

( f1(x), f2(x), . . . , fm(x))T ∈ Rm constitutes the objective space. Suppose there are two

different vectorsu = (u1, . . . ,uk)T andv = (v1, . . . , vk)T ∈ Rk. u is said to dominatev

if ut ≤ vt for all t = 1, . . . ,m in a minimization context. A decision vector̃x ∈ S is

said to be Pareto optimal if there exists no any other solution x ∈ S that dominates̃x.

The set of all the Pareto optimal solutions are called Paretoset (PS). The Pareto front

(PF) is defined as the set of all the corresponding Pareto objective vectorsF(x), which

is expressed asPF = {F(x) ∈ Rm|x ∈ PS}.

MOEA/D

MOEA/D incorporates the decomposition approaches into the framework of MOEA

by converting the MOP in (3.3) into a number of scalar optimization subproblems

which are optimized simultaneously through the cooperation among the neighborhood-

ing subproblems. In MOEA/D, the decomposition approach is rather important. The

most commonly used method is the weighted sum approach [82],which works well

for the problem with convex PF. The subproblem can be expressed by

min gws(x|λ) =
m∑

t=1

λr fi(x) sub ject tox ∈ S (3.4)
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whereλ = (λ1, . . . , λm)T , λt ≥ 0 and
∑m

t=1 λt = 1 is the coefficient vector andx is the

variable to be optimized. More details of MOEA/D can refer to [74].

Greedy Randomized Adaptive search procedure (GRASP)

GRASP [83] is a forward-based selection method, in which eachiteration consists

of two phases, the construction of the greedy randomized feasible solution and the

local search procedure. In the solution construction, a RCL (restricted candidate list)

is built which provides a subset of candidate elements, of which the cost function

lies in a certain range and one element is randomly selected to add into the partial

solution until the optimal solution is obtained. After a partial solution is formed, a

local search procedure is used to search for improvement forthe current solution in

the neighborhood. GRASP overcomes the shortage of over-greedy nature, which is

caused by improperly only selecting the ’best’ element at each iteration. GRASP has

been widely used in many areas, such as distributed virtual environments (DVEs) [84],

neural networks [85] and planning [86].

3.3 The Proposed Algorithm

3.3.1 Algorithm framework

The framework of MOEA/D-PGRASP is shown in Fig. 3.1. In phase 1, at first,

MOEA/D is used to generate the Pareto set and a group of preferred solutions are

selected. Then, the statistical features are extracted from Pareto set and the preferred

solutions. At last, based on these features, hierarchical cut-off and combination strat-

egy (HCCS) is applied to obtain the initial active set. In phase2, the active set is

updated by the proposed probability based GRASP (PGRASP) and the reconstructed

signal is finally obtained.

At first, MOEA/D is used to solve the MOP stated in (3.2), which can be decom-

posed into several scalar subproblems according to (3.4).

gws
r (x|λr) = λr1||x||1 + λr2||y − Ax||22, r = 1, . . . ,Npop (3.5)
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MOEA/DMOEA/D

Pareto set and selected solutionsPareto set and selected solutions

Featut re extractionFeature extraction

HCCSHCCS

PGRARR SPPGRASP

Reconstrur cted signalReconstructed signal

phase 1

phase 2

Figure 3.1: The framework of MOEA/D-PGRASP

whereNpop denotes the number of subproblems. It is noticed that the formula of the

subproblem in (3.5) has the same form with that of the single objective problem in

terms of Lagrange multiplier in (3.6). Each subproblem is anindependent single ob-

jective problem.

min
x
||y − Ax||22 + λ||x||1 (3.6)

Basis pursuit denoising is an effective algorithm to solve the problem in (3.6). It is

well known that the regularization parameter plays an important role in influencing the

reconstruction result. The solution is very sensitive to the choice of regularization pa-

rameter. To find the best parameters, it requires high computational cost for trying out

different choices. So, it is reasonable and meaningful to apply MOEA/D to decompose

the MOP into several subproblems by assigning different weight vectors and optimize

these subproblems simultaneously.

3.3.2 Select Preferred Solutions from Pareto Set

In our method, MOEA/D is implemented in a DE (differential evolutionary) manner

[75] to obtain the Pareto set. The detail of MOEA/D-DE for CS reconstruction is stated

in Algorithm 3.
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Algorithm 3: MOEA/D-DE for CS reconstruction
Input:

A: The sensing matrix;
y: The measurement vector;
T: The maximum number of iterations;
NS: Neighborhood size for each subproblem;
Npop: The number of the subproblems;

Output:
{F(x1), . . . , F(xNpop)}: The approximated PF
Sp = {x1, . . . , xNpop}: The approximated PS
1-Initialization : generate an initial population randomly and the weight vector
λr , r = 1, . . . ,Npop, and setz= 0;
2-Decomposition: decomposeF(x) into Npop sub-problems as described in
equation (3.5);
3-Determine neighborhood: compute the Euclidean distances between any two
weight vectors and selected the closestNS weight vectors to constitute the
neighborhoodB(r) = {r1, . . . , rNS} for the ith subproblem;
4-Update:
while z< T do

for r = 1, . . . ,Npop do
4.1-DE: Setr1 = r and randomly chooser2 andr3 from B(r). Then apply

DE operator to generate a new solutionȳ;
4.2-Mutation: perform Gaussian mutation on̄y with probability pm to

generate solutionym;
4.3-Update of solutions: Update the current and neighborhooding solutions

and their corresponding function values{F(x1), . . . , F(xN)};
end for
z= z+ 1;

end while
return Sp

End

In Algorithm 3, DE operator is applied to reproduce the solutions which is de-

scribed as follows. For each element ¯yk in solutionȳ = (ȳ1, . . . , ȳn), it is updated by

ȳk =



xr1
k + F × (xr2

k − xr3
k ), with probability CR;

xr1
k , with probability 1−CR

(3.7)

where CR and F are the two control parameters.

The Gaussian mutation in Step 4.2 generatesym = (y1, . . . , yn) in the following
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way:

yk =



MG(ȳk) with probability pm;

ȳk, with probability 1− pm

(3.8)

whereMG(ȳk) = min(max(N(ȳk, σG),ak),bk), yk ∈ [ak,bk] represents thekth variable

in ȳm, N(·) denotes Gaussian distribution andσG is chosen byσG = (bk − ak)/G. In

(3.8),G andpm are the two control parameters for the mutation operator.

In Step 4.3, the solutionxh of the hth sub-problem is updated by comparing the

function values ofxh andym in the following way. Randomly select an indexh from

the neighborhoodBr , if gws
h (ym|λh) ≤ gws

h (xh|λh), then setxh = ym and the function

valueFVh = F(ym). This procedure lastsnr times, wherenr is the maximal number of

solutions replaced by each child solution.

In real applications, decision makers (DMs) usually focus on the preferred part of

PF. Setting the preference has been proved to be effective in helping decision makers

to select optimal solutions [87] [88]. Since the original signal is usually not available,

solutions with small measurement error are usually regarded as good reconstruction. In

Fig. 3.2 (a), an example of selecting the preferred solutions based on PF is illustrated,

where x-axis representsl1 norm of the signal and y-axis denotes the measurement error

(ME). On the PF curve, the region marked in red rectangle is focused and its zoomed-

in view is presented in Fig. 3.2 (b), where the red dashed lines denote the upper bound

of the ME,MEu and lower bound of ME,MEl, respectively.
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Figure 3.2: (a) Illustration of the selected zone on Pareto front (PF). (b) The zoomed-in
view of the corresponding error range

The lower bound of ME is equal to the smallest ME,Ml, among all the solutions.

On the obtained PF, the largest ME is denoted byMu and the upper bound,MEu, can

be determined by Theorem 1.
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Theorem 1 Given the sensing matrixA ∈ RM×N (M < N), suppose the additive mea-

surement noisen ∼ N
(
0, σ2

)
, ∃1 < c ≤ d (D − 1) + 1,d ∈ [0,1],D ≫ 1, the upper

bound for ME is max
(
cMl , cMσ2

)
,

For different signals, the ME ranges are different. In Theorem 1,d is a normalized

parameter. So, it can be set globally for different signals under different noise levels.

The solution with ME lying between the upper bound and lower bound is selected as

the preferred solution. All the preferred solutions form a set Es. Es ∈ RN×Sn can be

regarded as a matrix, of which each column denotes a selectedsolution and there are

Sn solutions in total. The proof of Theorem 1 can refer to supplementary documents.

3.3.3 Feature Extraction and Hierarchical Cut-off and Combina-

tion Strategy

The nonzero entries and zero entries in a sparse signal are shown in Fig. 3.3. After the

[1, N]iÎentry

Sparse signal of length N

i

Figure 3.3: The definition of entry in sparse signal. Each block denotes an entry of the
sparse signal, where the colored denotes the entry with nonzero magnitude (nonzero
entry) and the uncolored is the entry with the magnitude of zero (zero entry).

active setEa, which is made up of all the nonzero entries, is determined, the recovered

signal can be obtained by least square method.

x̂ =
[
A(:,Ea)

TA(:,Ea)
]−1

A(:,Ea)
Ty (3.9)

whereA(:,Ea) denotes the submatrix containing the columns specified in the setEa.

So the objective of the reconstruction is to find the ground-truth active set as accurately

as possible.

Feature Extraction

We consider the following two statistical features to distinguish the importance of each

entry in signal :
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First, in Es ∈ RN×Sn, each column represents a recovered signal preferred by de-

cision makers. We apply the hard thresholdCthreshold to filter the data inEs. For an

elements ∈ Es, it is updated by

s=



s, |s| ≥ Cthreshold;

0, |s| < Cthreshold

(3.10)

whereCthreshold =

√
0.01×E

N andE =
∑

s∈Es

s2 denotes the energy ofEs. Then, count the

number of the nonzero elementsqi , i ∈ [1,N] in ith row of the updatedEs. The appear-

ance probability (AP)pi of entry i as nonzero entry is calculated bypi = qi/
∑

qi , i =

1, . . . ,N. All the solutions inEs achieve small ME which indicates good reconstruc-

tion, so the entry with higher AP as a nonzero entry is more possible to be the nonzero

entry in the recovered signal. All thepis with respect to entryi are obtained to form

AP set. The structure of theith element in AP set is defined as (i, pi).

Second, we evaluate the importance of the entryi by calculating the magnitude

variance (MV)vi of the ith row in Sp. As Sp contains all the Pareto optimal solutions

with varying MEs (from small to large), the magnitude of important entry should be

changed significantly for different solutions. So larger MV indicates more contribution

that the entry makes in the reconstruction process and all the vis with respect to entryi

form MV set. Theith element in MV set is denoted by (i, vi).

Hierarchical Cut-off and Combination Strategy (HCSS)

The statistical features, AP and MV, for each entry are obtained, based on which the

entries can be categorized into three types: important, contributive and ignorable in the

reconstruction process. The definitions are as follows:

a. important entry: the one with both largepi andvi, which is regarded as a nonzero

entry;

b. ignorable entry: the one with either very smallpi or vi, which is regarded as a zero

entry;

c. contributive entry: the one lies between the aforementioned two types of entries.
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Neitherpi nor vi is very large or ignorable.

The contributive entries majorly come from two aspects. On one hand, the nonzero

entry with small magnitude may not have a large AP, because sometimes it is forced

to be the zero entry in the feature extraction step, which lower the AP of this entry

to be a nonzero entry. Therefore, these entries may be included in contributive ones.

On the other hand, due to the randomness of genetic operations, some zero entries

are mistreated as the nonzero ones in solving the MOP, which are also included in

contributive entries. Therefore, to locate the nonzero entries accurately, it is necessary

to distinguish these two types of entries in contributive ones. In this case, the nonzero

entries are made of all the important ones and partial contributive ones.

In order to find the nonzero entries, the initial step is to determine the important

ones, contributive ones and ignorable ones. According to the definitions given above,

the ignorable ones have either small AP or MV, so it is more convenient to determine

the ignorable entries firstly from AP set and MV set, respectively. Then, the important

ones and contributive ones can be obtained from the remaining entries. Clustering

is an efficient unsupervised learning tool to partition the data based on the selected

features. The significant advantage of clustering is that the partition is conducted in

a data-adaptive way and fit for the data structure. Therefore, a hierarchical cut-off

and combination strategy (HCSS) based on clustering is proposed to obtain these three

types of entries in recovered signal.

Layer 1Cut off Cut off

AP set MV setClustering 1

set A set B

Set C

Layer 2
Clustering 2

ignorable ignorable

important contributive

Combination

C1
C2

Figure 3.4: The procedure of HCCS
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As shown in Fig 3.4, there are two layers in HCCS. In Layer 1, k-means cluster-

ing [89] is applied to all thepis in AP set and all thevis in the MV set, respectively

(clustering 1). The ignorable entries are discarded and theremaining entries in AP set

and MV set constitute set A and set B, respectively. This cutoff strategy is described

as follows:

1. SetK1d as the initial number of clusters for K-means clustering andapply it to

AF set or MV Set;

2. Calculate the mean value ofK1d cluster centers;

3. If |clak−mean(cla)|
|mean(cla)| ≥ 1− ǫ1, k = 1, . . . ,K1d, combine the satisfied clusters together to

form a new clusterEc, wherecla is the vector consisting of all the cluster centers

clak andmean(·) denotes the operator to compute the mean value of 1D vector;

4. Update the number of clusters byK1 = K1d − |Ec| + 1 and discardEc, where|Ec|

denotes the number of clusters inEc and all the elements inEc are the ignorable

entries.

In Layer 2, set A and set B are combined together and two elements, pi andvi, that

share the samei are preserved to form a new element with the structure (i, pi , vi) in

set C. In addition, the entry that only haspi or vi is removed from set C. The element

structure of set A, set B and set C is given in Fig 3.5. Then, setC is divided into two

groups: the important entries,C1 and contributive ones,C2, according to the results of

k-means clustering (clustering 2) on the data, (pi , vi), of which the procedure is given

as below.

1. SetK2d as the initial number of clusters for K-means clustering andapply it to

set C;

2. Calculate the mean value of theK2d cluster centers;

3. If
||clak−mean2(cla2)||22
||mean2(cla2)||22

≥ 1− ǫ2, k = 1, . . . ,K2d, combine the satisfied clusters together

to form a new clusterE2c, wherecla2 ∈ R2×K2d is a matrix with each columnclak

andmean2(cla2) returns a vector with size 2× 1, where each row is the mean

value of the corresponding row of the 2D vectorcla2;
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4. Update the number of clustersK2 = K2d− |E2c|+1 and setEin = E2c, where|E2c|

denotes the number of clusters inE2c.

… ...

,  = . .i S S A position B positionÎ B positi..

1 2a b=

One simple example of element structure in set C

APAP
entryrrentry
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Figure 3.5: The structure of the elements in sets A, B and C. Thesimple example of
how the elements in set A and set B are combined to generate the2D element (the
entry index are not included) in set C is presented, wherea1 andb2 denote the same
position andi = a1 = b2 is recorded for new element in set C.

3.3.4 PGRASP

As mentioned above, we need to further screen some of the contributive entries and

add them into the active set, which are usually regarded as the nonzero entries with

small magnitude. Greedy algorithm is a good choice for this problem, in which one

entry is chosen based on the defined cost function and added into the active set at each

iteration. However, in the presence of noise, the cost function may not be accurate

enough to help select the entry with very small magnitude. Inaddition, as the greedy

scheme only allows to select the ’best’ entry measured by thecost function among all

the candidates, there is only one possible solution available. If the selected entry in

the current iteration is not correct, the selection resultsin the upcoming iterations will

be affected. GRASP, a meta-heuristic method, often deals with thiskind of problem

effectively. It provides a subset of all the candidate entries and each entry in this

subset has the opportunity to be selected at the current iteration. So, GRASP is able

to generate more possible solutions without forcing to choose the ’best entry’ at each

iteration. In original GRASP, the selection of the elements in RCL is similar to a
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random sampling procedure which has low efficiency and all the elements are treated

equally. In order to increase the discriminating power of the selection, a probability

based GRASP (PGRASP) is proposed, where AP of each entry is considered in the

cost function. PGRASP is described in Algorithm 4, where two important phases are

included: the probability greedy randomized construction(PGRC) and local search

procedure.

Algorithm 4: PGRASP
Input:

xc: The initial solution;
E(0)

a : The initial active set;
E(0)

in : The initial inactive set;
Output:

xopt: The optimal solution
1-Initialization : RCL= E(0)

in ; xopt = xc; l = 1;
2-Set up the neighborhood of elementi: Divide E(0)

in into K clusters according to
k(l)(i) in (3.14), wherei ∈ E0

in;
Find the entries belonging to the same cluster withi to constructN(i) as the
neighborhood of entryi and randomly select an entryi ∈ E0

in to start Step 3;
3-Generate the optimal solution:
while The neighborhood of selected entryi, N(i) , ∅ do

3-1 PGRC:
Evaluatecl(i) for all i ∈ El−1

in ;
Select elementi ∈ RCLwith the largest value of cost function described in

(3.14);
3-2 Update the active set and the inactive set:

Removei from El−1
in to obtainEl

in;
El

a = El−1
a ∪ {i};

3-3 Reevaluate the incremental cost and update the reconstruction
residual:

xopt =
[
A(:,El

a)
TA(:,El

a)
]−1

A(:,El
a)

Ty ;
α = β(l − 1)+ γ;

3-4 Local search Procedure:
xopt = LS(xopt);
l = l + 1;

end while;
return xopt;
end PGRASP;

In Algorithm 4, the inactive set is defined as the set of contributive entries. PGRASP

works in an iterative way, in which one element from inactiveset is selected according

to the value of cost function and added to the active set untilthe terminal condition is
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satisfied. We initialize the active setE(0)
a = C1 and inactive setE(0)

in = C2. The initial

solutionxc can be obtained by (3.9) withEa replaced byE(0)
a .

PGRC

PGRC is used to determine the RCL and select the candidates of nonzero entries based

on AP. At lth iteration (l > 1), the incremental cost of entryi ∈ El
in is calculated by

cl(i) = A(:, i)Tr l−1, l = 1, . . . , iter (3.11)

whereA(:, i) denotes theith column of the sensing matrixA. The residualr l−1 is ob-

tained at the previous iteration.

r l−1 = y − A(:,El−1
a )xopt, l = 1, . . . , iter (3.12)

whereEl−1
a denotes the active set inl − 1th iteration. So, RCL can be determined by

RCL← {i ∈ El
in|cl

min ≤ cl(i) ≤ cl
min+ α(c

l
max− cl

min)} (3.13)

In PGRASP, the suppressing parameterα has the linear relationship with the it-

eration indexl. β ∈ (0,1) andγ ∈ (0,1) are the positive parameters to determine the

suppressing power. With the increasing number of iterations, the search scope becomes

larger and PGRASP is gradually approaching to an entirely greedy algorithm, ensuring

that the entry with high cost function can be eventually selected.

The cost function to be maximized in PGRASP takes AP of the entries into con-

sideration, which is expressed as

kl(i) = cl(i) + λl pi , i ∈ RCL (3.14)

whereλl is the weighting parameter. For simplicity,λl is set as 1. To eliminate the

influence of the data with different orders of magnitude, the function values of the
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elements in RCL in each iteration are normalized in (3.15) and (3.16), respectively.

cl(i) = cl(i)/
∑

i∈RCL

cl(i) (3.15)

I l(i) = pl
i/

∑

i∈RCL

pl
i; (3.16)

The local search procedure

The effectiveness of the local search in PGRASP depends on the definition of neigh-

borhood structure and the starting solutions. Since the starting solutions are already

determined by the initial active set, a proper neighborhoodstructure is necessary to

be designed. In PGRASP, the neighborhood of each elementiis defined as a group of

elements that share the same cluster with elementi. The groups are obtained by ap-

plying K-means clustering to the all the elements,(pi , vi) , i ∈ El
in. The neighborhood

structure is shown in Fig. 3.6, where the circle in red represents the selected element in

each cluster and its corresponding neighborhood is a set including the other positions

in the same cluster. In Fig. 3.6, for a signal with lengthN = 100 (so each entry should

be confined as an integer between 1 and 100), the inactive setEl−1
in is clustered into

four groups. In each group, the selected element has three neighborhood elements. In

PGRASP, only one element is selected from the inactive setEl−1
in at lth iteration. The

local search (LS) procedure is shown in Algorithm 5.

Algorithm 5: LS

1: Randomly choose one elementi
′
from N(i) to replacei;

2: Compute the solution:x
′
opt andr

′
;

r l = y − A(:,El+1
a )xopt;

r
′

l = y − A(:,El+1
a )x

′
opt;

3: if ||r ′l ||22 < ||r l ||22
Replacei with i

′
in El

a andi
′
with i in El+1

in , respectively;
Updatexopt = x

′
opt;

end if;
4: return xopt;

PRASP is stopped when the neighborhood of any selected entry is empty, which

ensures that limited number of entries is added into the actives set to maintain small

sparsity. The design of the terminal condition also guarantees that the entries with high
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The initial inactive set

Cluster 1 Cluster 2 Cluster 3 Cluster 4

76 24 2 35 23 34 9 26 13 52 45 92 49 73 57 29

{24, 2, 35} {23, 9, 26} {13, 52, 45} {49, 73, 29}

Neighborhood Neighborhood Neighborhood Neighborhood

Figure 3.6: The schematic diagram of neighborhood structure. Take a signal with
lengthn = 100 for example, the initial inactive setE(0)

in is grouped into four clusters.
The selected entry in each cluster is marked red. The neighborhood of the selected
entry 76, 34, 92 and 57 have the neighborhood of{24,2,35},{23,9,26},{13,52,45} and
{49,83,29}, respectively.

AP can be eventually selected with sufficient iterations, since these entries are in the

same neighborhood with each other.

3.4 Experimental Studies

3.4.1 Test problems

Benchmark problems in the toolbox of SPARCO1 are tested to evaluate the effective-

ness of the reconstruction algorithms. The selected benchmark problems include two

1D sparse signals (Gausspike and Sgnspike) in the spatial domain and two 1D signals

(Gcosspike and Jitter) sparsely represented under specificbasisB. Besides, one 2D

signal is tested to evaluate the robustness of MOEA/D-PGRASP. For Gcosspike and

Jitter, the measurement error is expressed as‖y −Mθ‖22 , whereM is the equivalent

measurement matrixM = AB, θ denotes the sparse coefficient vector andA is a Gaus-

sian random matrix. The tested 1D signals are shown in Fig.3.7. For the 2D signal, the

detail is described in 3.4.7.

To validate the generalization of the proposed MOEA/D-PGRASP, some randomly-

generated 1D sparse signals are also tested which are obtained in the following way.

At first, the nonzero entries of the signal are randomly selected which constitute the

active set. Then, the magnitudes of these entries are obtained from the standard normal

distribution. At last, the magnitudes of the signal are normalized. The length of the

1http://www.cs.ubc.ca/labs/scl/sparco/
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Figure 3.7: Test signals: (a) Gausspike (b) Sgnspike (c) Gcosspike (d) Jitter (e) Sparse
coefficients of (c) (f) Sparse coefficients of (d).

signal is 1000.

In addition, one real-world benchmark dataset is tested to further validate the prac-

ticality of the proposed method. Due to the page limitation,both the graphical and

numerical results are provided in the supplementary materials.

3.4.2 Experimental setting

In MOEA/D-DE, the number of sub-problemsNpop, the neighborhood size for each

sub-problemNS and the maximum number of iterationsT have effects on the obtained

solutions. Since we consider gathering a group of solutionswhich are near-optimal,
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a large number of iterations is necessary. Besides, more subproblems are able to pro-

vide more useful information contained in the sample set which is beneficial for the

decision maker. Considering the overload of computational cost that evolutionary al-

gorithm brings, a moderateT andNpop are set. The parameters of MOEA/D-DE for

CS reconstruction are listed in Table 3.1.

Table 3.1: Parameter setting of MOEA/D-DE for CS reconstruction

Parameters Gausspike Sgnspike Gcosspike Jitter 2D signal random

Npop 1201 1201 1201 1201 1601 1201

T 4000 6000 8000 6000 10000 4000

NS 200 200 200 200 200 200

CR,F 1,0.5 1,0.5 1,0.5 1,0.5 1,0.5 1,0.5

G,pm 20,1/1024 20,1/2048 20,1/1024 20,1/1000 20,1/4096 20,1/1000

The number of selected preferred solutions,Ns depends on the parameter,d. A

smallerd is preferred, as the satisfied solutions have relatively small ME which indi-

cates a good recovered signal. In the experiment,d is set to 0.03. In HCCS,K1d = 6,

K2d = 6, ǫ1 = 0.02 andǫ2 = 0.05. In PGRASP, by empirical studies, the parameters

(β, γ) in linear suppressing function in PGRC are set as (0.2,0.1),(0.5,0.2), (0.1,0.05),

(0.5,0.5) and (0.35,0.1) for Gausspike, Sgnspike, Gcosspike and Jitter and 2D sig-

nal, respectively, with which MOEA/D-PGRASP can achieve the best reconstruction

result. The number of clustersK to define the neighborhood is set as 4. For randomly-

generated signal, the setting details are given in 3.4.6.

3.4.3 Compared with other CS reconstruction methods on 1D sig-

nal

The results of our proposed MOEA/D-PGRASP are compared with some conventional

methods and MOEA methods. The conventional methods includebasis pursuit denois-

ing (BPDN) [67], SPGL1 [10], Orthogonal Matching Pursuit (OMP) [7], Smoothed

L0 (SL0) [4] and Elastic-net [90]. For MOEA methods, to validate the effectiveness
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Table 3.2: The performance comparison of the reconstructedmethods under the sam-
pling rate of 0.2

Signal noise level
BPDN SL0 OMP SPGL1 EN M+GRASP MOEA/D-best Proposed

a 1 b 2 a b a b a b a b a b a b a b

Gausspike

0.01 21.49 25.4332.22 25.0433.96 24.1536.20 25.0829.98 24.0836.29 24.03 36.9 24.53 39.97 23.99

0.02 20.61 25.8526.61 25.9326.59 24.3229.06 25.8624.81 23.9831.22 23.9431.46 24.43 33.81 23.91

0.03 19.27 26.4321.56 26.8422.81 24.5325.45 26.8721.36 24.0128.01 24.0327.88 24.21 29.69 23.99

0.04 17.75 27.1119.76 27.7617.75 24.5323.71 27.9819.11 24.1225.13 24.0023.42 24.53 26.99 23.87

0.05 16.55 27.8318.75 28.7218.10 24.5020.91 29.1317.30 23.9822.82 24.2121.32 24.07 25.17 23.92

Sgnspike

0.01 20.80 23.4832.19 22.6127.72 20.0034.92 20.0036.67 22.5138.43 20.1731.78 22.88 44.01 19.99

0.02 21.38 24.5728.08 24.9333.41 20.0129.07 25.0628.89 19.9933.45 20.3428.30 23.03 37.99 19.97

0.03 20.59 25.9825.24 27.2729.88 20.0126.55 27.3025.37 19.9931.76 20.5124.56 23.21 34.47 19.96

0.04 19.68 27.5022.93 29.2930.34 20.0223.07 30.0722.87 19.9928.59 20.6822.77 23.31 31.97 19.94

0.05 18.71 29.0720.87 31.5628.40 20.0221.76 32.4720.93 19.9926.51 20.8520.85 23.55 30.03 19.93

Gcosspike

0.01 25.32 185.1024.07 185.3826.42 171.2326.43 183.2527.32 178.6325.57170.3224.52 188.4526.57171.79

0.02 25.29 185.1824.05 185.4726.41 173.5426.37 185.1027.27 178.6125.56 172.3024.16 186.8027.33 171.91

0.03 25.97 185.3124.02 185.6826.69 174.5426.26 186.9426.97 174.6426.67 173.9525.09 192.1927.04 172.26

0.04 26.53 185.4823.97 185.8826.28 173.9525.77 188.7926.72 173.6825.16172.7024.53 191.5526.79173.57

0.05 25.46 185.7123.91 186.0424.96 176.1225.39 190.6325.66174.3724.77 174.4823.44 185.6225.54174.31

Jitter

0.01 17.99 5.16 23.53 3.46 29.69 1.85 21.35 2.85 29.34 1.77 31.90 1.79 31.39 1.74 33.91 1.77

0.02 16.94 5.98 17.39 5.16 23.67 1.97 16.32 4.56 23.33 1.75 24.25 1.84 23.84 1.73 27.89 1.79

0.03 16.36 7.90 13.95 6.79 20.15 2.08 13.59 6.82 19.80 1.77 19.86 1.89 16.36 1.63 24.37 1.82

0.04 15.20 8.43 11.19 8.25 17.65 2.19 11.69 8.45 17.30 1.87 16.42 1.95 11.31 1.85 20.93 1.84

0.05 13.77 9.82 8.46 9.48 15.72 2.31 9.94 10.3515.37 1.88 14.59 2.00 9.93 1.76 19.93 1.87

1 SNR in dB
2 l1 norm

of PGRASP, M+GRASP in our experiment is defined as the algorithm which applies

MOEA/D-DE to get the PS without considering AP in the cost functionof GRASP.

We also choose MOEA/D-best for comparison, which denotes the solution with the

highest SNR from PS obtained by MOEA/D-DE in our method.

In these comparative methods, SPGL12 is the state-of-the-artL1 norm optimization

algorithm that takes the tradeoff into account. BPDN is the most popular algorithm

for L1 norm minimization. OMP is the representative greedy algorithm and SL03,

which considers approximatingL0 norm and has been proved to be superior toL1

norm optimization. Elastic-net denoted by EN, is the state-of-the-art LASSO based

regression method.

In our experiment, the error tolerance of BPDN is set as 10−3 and the Lagrangian

multiplier is set according to [67]. OMP is terminated when the error tolerance reaches

0.02. The parameters in SPGL1 and Elastic-net are set where the best performances

2The code of SPGL1 is available at http://www.cs.ubc.ca/labs/scl/spgl1
3SL0 code can be downloaded at http://ee.sharif.edu/ SLzero/
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are obtained. The code of BP and OMP are available from The SPARCOtoolbox. All

the experiments are simulated on Matlab 2013a on the computer Core i7 3.4GHz with

8GB RAM. To reduce the randomness of the measurement matrix, each experimental

result is recorded based on the average of 15 runs.

In Table 3.2, SNR andl1 norm of the reconstructed signals under different noise lev-

els whenS R= 0.2 are shown (more statistical results whenS R= 0.25,S R= 0.3 and

S R= 0.35 are presented in the supplementary materials). By comparison, MOEA/D-

PGRASP can achieve 1.8-3.8 dB gain for Gausspike compared with other methods.

Meanwhile, the smallestl1 norm can be obtained, followed by Elastic-net, which

is very competitive in maintaining smalll1 norm in reconstruction. The proposed

MOEA/D-best has the second best results, however the sparsity of the solution is worse

than that of OMP and M+GRASP. For Sgnspike, the advantage of MOEA/D-PGRASP

is very significant, whose SNR is 1.6-7.4 dB higher than that of the second best one.

SPGL1 and SL0 fail to maintain the sparsity with the increaseof noise level. For

Gcosspike, the highest SNR is also obtained by MOEA/D-PGRASP when the noise

levels range from 0.01 to 0.05. MOEA/D-PGRASP achieves the competitivel1 norm

compared with OMP and M+GRASP, which indicates that the design of neighbor-

hood and terminal condition in PGRASP guarantee the limited number of selected

entries to maintain smaller sparsity. For Jitter, SNR of therecovered signal obtained

by MOEA/D-PGRASP is the highest, although MOEA/D-best shows the smallestl1

norm among all the methods. A too small sparsity results in the unacceptable RE. It

is also demonstrated that BP and SPGL1 are not very effective to recover the signal

which is very complex in space domain.

From the numerical results, it is demonstrated that the advantages of the proposed

MOEA/D-PRASP come from two parts. In the first phase, MOEA/D-DE is applied

to obtain a group of promising solutions. Compared with BPDN, the best solution

obtained by MOEA/D-DE has already gain better SNR and smallerl1 norm, because

these multiple solutions are solved interactively which can reduce the effect of the

noise more significantly. Besides, the solution obtained by MOEA/D-DE is also very

competitive compared with that of OMP and SL0, as optimizingl1 norm is more robust

to noise than minimizing thel0 norm. In addition, the statistical features of each entry,
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AP and MV, are extracted from the group of solutions, based onwhich the majority

of the nonzero entries can be identified more accurately in the first phase. Although

the Elastic-net considers multiple solutions, it ignores the statistical features of these

solutions and overstress the sparsity, which results in a relatively small SNR. SPGL1

takes the tradeoff relationship into account, however, it is only based on single solution

and fail to explore the statistical properties of multiple solutions.

In the second phase, the feature of AP is incorporated into the greedy function of

the proposed PGRASP, which provides more informative feature to distinguish the re-

maining nonzero entries from zero ones. It is worth noting that MOEA/D-PGRASP

outperforms M+GRASP, which indicates that incorporation of AP into the costfunc-

tion of PGRASP provides better discriminative power to select the nonzero entries

more accurately.

We also conduct the Wilcoxon signed ranks test (WSRT) suggested in [91] on both

the SNR andL1 norm results in Table 3.2, where the pair-wise comparison ismade

between our proposed method and each of the compared methodsin this paper. In

the comparison, 20 results (one column in Table 3.2) for eachalgorithm is used as

input and both the test results are recorded in Table 3.3. TheMOEA/D-PGRASP

shows an improvement over all the compared approaches with alevel of significance

α = 0.01 in terms of PSNR andL1 norm, respectively, whereR+ denotes sum of the

ranks that the proposed method outperforms the compared method andR− represents

sum of the ranks for the opposite,R+ + R− = 210. By obtaining the significance value

p in Table 3.3, it is demonstrated that can reconstruct the original signal precisely and

significantly outperforms the conventional methods and thecompared MOEA methods

by statistical analysis.

3.4.4 Effect of the number of preferred solutions

In this subsection, the effect ofSn on the quality of reconstructed signal is investigated.

We test four 1D signals. For fairness, in MOEA/D-PGRASP, the parameters exceptSn

in the experimental simulation are not changed. ME and SNR ofthe reconstructed

signals whenSn is equal to 300, 600, 900 and 1200 are plotted in Fig. 3.8 and Fig. 3.9,

where ’NS’ denotesSn.
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Table 3.3: Wilcoxon signed ranks test results for the reconstructed results when sam-
pling rate is equal to 0.2.

SNR Comparison R+ R− p-value SNR Comparison R+ R− p-value

vs. BPDN 210 0 8.86× 10−5 vs. EN 201 9 3.33× 10−4

vs. SL0 210 0 8.86× 10−5 vs. M+GRASP 210 0 8.85× 10−5

vs. OMP 210 0 8.80× 10−5 vs. MOEA/D-best 210 0 8.86× 10−5

vs. SPGL1 210 0 8.86× 10−5

L1 norm Comparison R+ R− p-value L1 norm Comparison R+ R− p-value

vs. BPDN 210 0 8.86× 10−5 vs. EN 196.5 13.5 1.00× 10−3

vs. SL0 210 0 8.86× 10−5 vs. M+GRASP 182 28 4.00× 10−3

vs. OMP 195 15 7.79× 10−4 vs. MOEA/D-best 195 15 7.79× 10−4

vs. SPGL1 210 0 8.86× 10−5

In Fig. 3.8, MOEA/D-PGRASP withNS = 600 obtain the smallest ME in recov-

ering Gausspike, Sgnspike and Jitter. For Gcosspike, the overall performance when

NS = 900 is better than others, although bothNS = 300 andNS = 600 can generate

the smallest ME twice (but highest ME twice and significant fluctuation). In Fig. 3.9,

the highest SNR is obtained for Sgnspike whenNS = 600. For Gausspike and Jitter,

MOEA/D-PGRASP withNS = 600 achieves the highest SNR in most cases. But for

Jitter, larger value ofNS improves SNR significantly. For Gcosspike,NS = 900 is

suitable for getting the highest SNR. The reason lies in the fact that the number of

nonzero entries in the sparse coefficients of Gcosspike is much larger than those of the

other signals. More preferred solutions are necessary to distinguish the nonzero entries

from zeros ones.

In general, a properSn is able to provide both the accuracy and the efficiency. If

Sn is too small, insufficient information decreases the quality of reconstruction. On

the contrary, a largeSn results in expensive computational cost and waste of resources

caused by redundant information.

3.4.5 Results of locating the nonzero entries

Suppose there areK nonzero entries in the original signal or its transform domain. The

proportionpcor is defined aspcor = Kc/K, whereKc denotes the number of correctly

located entries. Largerpcor denotes higher accuracy of finding the nonzero entries.



3.4. EXPERIMENTAL STUDIES 69

0.01 0.02 0.03 0.04 0.05
0

0.2

0.4

0.6

0.8

1

standard deviation of noise 

M
E

 

 

0.35,NS=300
0.35,NS=600
0.35,NS=900
0.35,NS=1200

(a) Gausspike

0.01 0.02 0.03 0.04 0.05
0

1

2

3

4

5

standard deviation of noise 

M
E

 

 

0.35,NS=300
0.35,NS=600
0.35,NS=900
0.35,NS=1200

(b) Sgnspike

0.01 0.02 0.03 0.04 0.05
1

2

3

4

5

6

standard deviation of noise 

M
E

 

 

0.35,NS=300
0.35,NS=600
0.35,NS=900
0.35,NS=1200

(c) Gcosspike
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Figure 3.8: The effect ofNs on measurement error (ME) whenS R= 0.35

And Kest is equal to the size of active set, which should be very close to K. We choose

Gausspike as the representative signal in this experiment,as it contains a moderate

number of nonzero entries with various magnitudes, rangingfrom 0.0376 to 2.1845.

In Fig. 3.10, the results ofpcor for Gausspike are presented, where it is indicated

that SPGL1 obtains the best performance in locating the nonzero entries, followed

by our proposed MOEA/D-PGRASP at the sampling rate of 0.2. MOEA/D-PGRASP

outperforms the other methods when the sampling rate is equal to 0.35. For the con-

ventional greedy algorithm, such as OMP, since the selection of entry is vulnerable to

the noise, thus a low value ofpcor is obtained.

In Fig. 3.11, it is demonstrated that MOEA/D-PGRASP can also achieve the num-

ber of nonzero entries very close to that of the ground-truth(32). It can locate the

smallest number of nonzero entries but can cover a largest portion of the nonzero en-

tries of the original signal.
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Figure 3.9: The effect ofNs on SNR whenS R= 0.35

3.4.6 Experiment on randomly-generated signals

In the experiment, the number of nonzero entries in the random signal is set to 30, 50

and 70. For each group, 15 signals are generated randomly andwe set the correspond-

ing parameters (β, γ) to (0.4,0.1), (0.3,0.1) and (0.25,0.05), respectively. For each

signal, the average RE andl1 norm on 30 runs are obtained under noise with the stan-

dard deviation of 0.01. To illustrate the performances of all the algorithms, we present

the summation of rankings for each method in reconstructing15 signals based on RE

0.01 0.02 0.03 0.04 0.05
0.75

0.8

0.85

0.9

0.95

1

Standard deviation of noise 

p co
r

 

 

OMP
BPDN 
SL0
SPGL1
EN
M+GRASP
Proposed

(a) sampling rate=0.2

0.01 0.02 0.03 0.04 0.05
0.75

0.8

0.85

0.9

0.95

1

Standard deviation of noise 

p co
r

 

 

OMP
BPDN 
SL0
SPGL1
EN
M+GRASP
Proposed

(b) sampling rate =0.35

Figure 3.10: The correctly locating percentage of Gausspike. For fairness comparison,
in the recovered signal, the entries with the largest 32 magnitudes are selected andKc

is counted among these 32 entries
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Figure 3.11: The number of nonzero entries found by different algorithms. For BPDN,
SL0 and SPGL1, if the magnitude of the entry is smaller than 0.03, then the entry is
regarded as zero entry.

and sparsity, respectively. For RE, we define the method with the smallest RE ranking

1st and so forth. Forl1 norm, the method which gains the smallest sparsity ranks 1st.

In Fig. 3.12 (a) and Fig. 3.12 (b), it is indicated that the proposed MOEA/D-PGRASP

has the highest ranking in RE while dealing with 15 random signals. For the sparsity

in terms ofl1 norm, our proposed method shows its superiority when the number of

nonzero entries is 30 and 50. But, Elastic-net (EN) outperforms our proposed method

when the nonzero entries in the signal is 70, which indicatesthat EN is able to maintain

smaller sparsity when the number of nonzero entries is larger.
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Figure 3.12: Comparison of the summation of rankings in reconstructing 15 signals
for each method

3.4.7 Experiment in 2D case

One 2D signal from benchmark problems is tested, of which thesize is 64×64 and the

representation basis is 2D haar Wavelet dictionary with thesize of 4096× 4096.

To investigate the robustness of different methods, the reconstructed results are
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compared in the presence of independent noise with standarddeviation from 0.01 to

0.05 with interval of 0.01. In Fig. 3.13 (a), the results ofl1 norm whenS R= 0.3 are

presented.

It is indicated that EN, BPDN and MOEA/D-PGRASP achieve very competitive

l1 norm. However, MOEA/D-PGRASP performs rather stable with the increase of

the noise level. Fig. 3.13 (b) demonstrates that MOEA/D-best outperforms the other

methods in ME and MOEA/D-PGRASP is also efficient in minimizing the ME. In Fig.

3.13 (c) and Fig. 3.13 (d), on one hand, MOEA/D-PGRASP can recover the signal

with the highest SNR and the lowest RE among all the methods; Onthe other hand,

the performance is robust to the augment of noise level.

The original signal and the reconstructed signals under thesampling rate of 0.2

are presented in Fig. 3.14. Due to the sensitivity of noise, the results of BP, SPGL1,

EN and SL0 show significant block artifact nearby the boundary between the black

and white components in the signal, which greatly degrades the visual quality. The

OMP and M+GRASP result in some outliers in the reconstructed image, which may

be caused by the inaccurate estimation of the nonzero entries. MOEA/D-PGRASP can

obtain better visual results compared with the other methods, as the nonzero entries

can be precisely estimated by mining the solutions from MOEA/D-DE. MOEA/D-

PGRASP is capable of achieving both good numerical and visualresults in 2D signal

reconstruction.

3.4.8 Computational complexity analysis in reconstruction

MOEA/D is regarded as an offline training process. Although evolutionary algorithm

increases the computational time, the solutions are storedas the database for reuse

once they are obtained. LetSa denote the number of the elements in the initial active

set. Suppose no error for the estimation of sparsity, the number of iterations in the

reconstruction process of MOEA/D-PGRASP is equal toT = K − Sa, whereK is

the ground-truth sparsity of the signal. At each iteration,with M measurements and

the signal lengthN, the computational cost isO(MN). So the total complexity in

the reconstruction increases byT times,O(T MN). The greedy algorithm e.g. OMP, of

which the reconstruction complexity isO(T MN). The ratio between the computational
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Figure 3.13:L1 norm, ME, RE and SNR comparison of different algorithms for 2D
signal

complexities of MOEA/D-PGRASP and OMP is calculated by

O(T MN)
O(KMN)

=
O(T)
O(K)

In MOEA/D-PGRASP, sinceT ≪ K, the computational complexity in phase 2 is

smaller than that of OMP. The computational time for different algorithms is also com-

pared in Fig. 3.15, where the major computational cost comesfrom Phase 1 and the

evolutionary manner consumes more time than the conventional methods. Although

better performances can be obtained, the efficiency of the algorithm is still an important

issue, which should be improved and carefully addressed in the future.

3.5 Conclusion

In this paper, MOEA/D-PGRASP is proposed to solve CS based signal reconstruction

problem, which benefits from three aspects described as follows:

Firstly, the statistical features of the samples are extracted and used for clustering,

which utilizes multiple competitive solutions from MOEA/D to generate one optimal
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(a) Original (b) BPDN (c) SL0 (d) OMP

(e) SPGL1 (f) EN (g) M+GRASP (h) Proposed

Figure 3.14: Reconstructed results, sampling rate:0.2, noise level:0.005

solution instead of directly selecting one solution from PSobtained by MOEA/D. Sec-

ondly, HCCS based on clustering can automatically determine the initial active set of

the nonzero entries according to the extracted statisticalfeatures. The strategy is able

to reduce the computational complexity for the reconstruction process since the major-

ity of the nonzero entries have already been included in the initial active set and only

a small number of nonzero entries are needed. At last, PGRASP incorporates AP of

each nonzero entry into the cost function. The probability provides a discriminative
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Figure 3.15: Comparison of the computational time for different methods
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feature to distinguish the nonzero entries from zero ones. Bycomparison with the con-

ventional algorithms and MOEA methods, it is demonstrated that MOEA/D-PGRASP

can obtain better results in both SNR andl1 norm.
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Chapter 4

Adaptive Patch-Based Sparsity

Estimation for Image via MOEA/D

4.1 Introduction

Sparse coding has gained increasing attention from researchers in signal or image pro-

cessing community over the past decade. Suppose thatx is a length-N signal and it is

said to beK-sparse ifx can be well estimated by usingK ≪ N coefficients under a

dictionary shown in (4.1).

α̂ = argmin
α

||x − Dα||22, s.t. ||α||0 ≤ K (4.1)

whereD ∈ RN×M is the dictionary composed of the column-wise representation basis,

α represents the sparse representation vector ofx underD, K denotes the sparsity and

|| · ||0 denotes thel0 norm.

A more familiar formulation for problem stated in (4.1) is toreversely exchange

the positions of constraint and objective. Thus,

α̂ = argmin
α

||α||0, s.t. ||x − Dα||22 ≤ ǫ (4.2)

whereǫ denotes the fitting error. The sparse representation model in (4.1) or (4.2) has

been widely applied in image processing, such as image superresolution [47, 92, 93],
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denoising [48] and compressed sensing [94] [27].

It has been proved that the problems stated in (4.1) and (4.2)are generally NP-

hard [95]. Greedy algorithms, such as matching pursuit (MP)[6], orthogonal matching

pursuit (OMP) [7] and its variants [8,9,45], work directly on the mathematical sense of

l0 norm. The greedy strategy iteratively constructs aK-term sparse solution by select-

ing the active atoms (columns) out of a dictionary. The atom which has the maximum

correlation with the residual in the previous iteration is added into the active atoms at

each iteration. Greedy algorithms succeed empirically andtheoretically in many situ-

ations, which is able to provide fast and sparse solutions. However, they only perform

well as long as the sparsityK is accurately known as a priority. So it is desirable and

important to estimate the sparsity prior before applying greedy algorithms.

In [96], the sparsity is supposed to be related to the complexity of the image which

is statistically measured by the contained textures and edginess. Based on the training

images, a linear relationship between the sparsity and the complexity is established

and proved to be effective. In [97], a generalized greedy matching pursuit algorithm

is proposed to provide a compressive sensing reconstruction that can adaptively assign

different sparsity to different images, where the sparsity is determined collaboratively

in a top-down and bottom-up way.

In many cases, it is difficult to estimate the sparsity of a natural image directly.

Unlike 1-D signals or some artificial images, a natural imageusually contains lots

of different patterns which vary significantly across different regions. Besides, the

sparsity is also dependent upon the selected representation basis. For example, some

natural images are represented more sparsely under the wavelet transform basis than

DCT transform basis. It is well known that natural images usually contain a lot of

repetitive patterns among the local patches. Compared with the entire image, the sta-

tistical analysis on local patches can provide a more robustand flexible model. The

redundant dictionary (N < M) trained from a group of sampled image patches provides

an adaptive and qualitative patch-based sparse representation. By adopting the same

dictionary, we can obtain the sparse representation for each patch fairly.

To estimate the sparsity, it is important to obtain the sparse representation vector. In

noisy environment, optimizingl1 norm is more robust and stable thanl0 norm. In [98],



4.1. INTRODUCTION 78

a stable sparsity measure of normalizedl1 norm is used instead ofl0 and the lower

bound is theoretically analyzed. It is also suggested that it is feasible to estimate the

sparsity of the signal in a statistically data-driven way inpractice. However, solving the

l1 norm programming usually costs expensively and results in large number of nonzero

entries inα. Moreover, the solutions are also largely dependent on the regularization

parameter which controls the tradeoff between the sparse representation error and the

sparsity (the number of active atoms in dictionary). By characterizing the tradeoff

relationship, patch-based sparse coding can be regarded asa multiobjective problem

(MOP).

In this paper, we focus on the patch-based sparsity estimation in an image and pro-

pose an adaptive sparsity estimation model which is composed of an offline training

phase and online estimation phase. In the offline training, at first, a scalable tree vocab-

ulary (SVT) is built based on clustering on the training patches and each node in SVT

denotes one cluster center. Then, the sparse coding for eachleaf node is formulated as

a MOP, where minimizing the sparse representation error andthe sparsity (minimizing

l1 norm ofα) are conflicting with each other. To solve this problem, a decomposi-

tion based multiobjective evolutionary algorithm (MOEA),MOEA/D [99] is applied

to obtain a group of Pareto optimal solutions. And al1-to-l0 norm mapping function

is used to update the PF, based on which the knee region detection is used to locate

the sparsity range of the leaf node. In addition, after all the leaf nodes are processed.

The obtained sparsity range is stored in a Look-up table (LUT), which can be reused

frequently. In the online estimation phase, if there comes aquery patch, its sparsity

range is set to that of the most similar node in SVT. And the corresponding sparse rep-

resentation vector can be obtained by a sparsity-restricted greedy algorithm (SRGA).

By comparing with the state-of-the-art greedy algorithms with fixed sparsity and an

adaptive method proposed in [97], experimental studies demonstrate that our proposed

approach achieves better coding quality in terms of PSNR andcosts less time.

The rest of the paper is organized as follows. Section 4.2 introduces basic concepts

of MOEA, followed by our proposed adaptive sparsity estimation model in 4.3. The

experimental results are presented in Section 4.4 and the concluding remarks are given

in Section 4.5.
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4.2 Multiobjective evolutionary algorithms

Multiobjective optimization have been widely applied to deal with the problems in dif-

ferent real applications [100] [101]. Multiobjective evolutionary algorithms (MOEAs)

have shown their great abilities to solve MOPs. Currently, there are three types of most-

researched MOEAs, the dominance-based, the indicator-based and the decomposition-

based methods. NSGA-II [68] is one of the representative dominance-based algo-

rithms, which applies fast sorting for the non-dominated solutions based on a crowd-

ing distance. Later on, the crowding distance is improved in[102] and [103]. For

indicator-based methods, these methods search and select the non-dominate solutions

by computing the defined indicator instead of ranking, such as hypervolume [104],

R2 [105] andǫ2 [106]. Decomposition based methods aim to apply decomposition

techniques to convert a MOP into a group of single optimization subproblems. For ex-

ample, in MOEA/D, all the subproblems are simultaneously optimized in a population-

based way. At each generation, the population is made up of the best solutions so far

for the subproblems. In the process of solving the subproblems, two subproblems in

the neighborhood, which is defined by the distances between their aggregation coef-

ficients vectors, should have very similar optimal solutions. The aggregation vectors

are usually generated by uniform sampling. In this paper, weapply MOEA/D, be-

cause both the objectives in our problem are convex and MOEA/D with weighted-sum

decomposition is very appropriate to deal with it as indicated in [99].

4.3 The proposed model

4.3.1 Motivation and formulation

The greedy algorithm, such as MP or OMP can work well for sparse coding in noiseless

environment. By setting a tolerance error, nonzero coefficients are obtained iteratively.

However, in the existence of noise, the sparsity is usually not estimated correctly. The

greedy forward-based search is very sensitive to the noise and one incorrect location

of nonzero entry affects the results in upcoming iterations. As shown in Fig. 4.1,

we choose three 8× 8 patches from one image and sparsely represent them under an
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overcomplete dictionaryD ∈ R64×800 by OMP where a Gaussian noiseb ∼ N (0, δb) is

added.k denotes the sparsity in terms ofl0 norm obtained without noise andk
′
denotes

the estimated sparsity whenδb = 0.01.
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Figure 4.1: The visualization of the sparse representationvector.
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Figure 4.2: Offline adaptively sparsity estimation model

To solve this problem, we have mainly three considerations as follows:

a. It is well understood that more number of active atomsK (the number of selected

representation basis) results in smaller coding error (higher representation accu-

racy). If more atoms are involved in the representation, thedictionary can provide

a better representation and vice versa. Therefore, minimizing the sparsity and min-

imizing the representation error are trade-off. Therefore, the sparse coding can be

formulated as a multi-objective problem (MOP).

b. Optimizingl1 norm is more robust compared withl0 norm in the noisy environment.

So, we minimizel1 norm instead ofl0 norm.

c. MOEAs can provide a group of good approximated Pareto optimal solutions for

MOP in one single run. The obtained solutions in the objective domain can for-

mulate a PF (a curve for bi-objective problem). The propertyof the PF is usually

analyzed to make the problem well understood. As demonstrated in [12] and [13],
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the solutions on the knee region or the threshold point can specify the sparsity of

the signal in compressed sensing recovery.

Therefore, a MOEA based sparsity estimation approach is proposed, which aims

to solve the MOP in (4.3).

min{ f1(α), f2(α)} (4.3)

where f1(α) = ||α||1 and f2(α) = ||x − Dα||22.

4.3.2 The flowchart of the proposed adaptive sparsity estimation

model

Regarding that MOEAs are very time-consuming and resource-intensive for the online

estimation, we use the MOEA and obtain the sparsity in an offline manner. To make

use of the generalization power of offline training, we propose an adaptive sparsity es-

timation model which integrated offline training for a large group of sampled patches

and online estimation for query patches. The flowchart of ourproposed model is pre-

sented in Fig. 4.2, which is composed of two major parts, the training phase (in the

dashed lines) and a sparsity determination phase.

4.3.3 Training phase

In the offline training phase, a certain number of isometric patches are randomly ex-

tracted from a set of training images as samples. Then these sampled patches are used

to construct a SVT. For each node of SVT, MOEA based sparsity estimation is pro-

posed to estimate the sparsity, where MOEA/D is applied to solve the MOP of sparse

coding. Then, the sparsity of each node is stored in a LUT for reuse.

Construct SVT

Since there are lots of sampled patches and it is ultimately expensive to apply the es-

timation patch by patch online. Considering that natural images often contains a lot

of repetitive patches in the local contents of image and based on the assumption that
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under the same represented basis, similar patches have verysimilar sparse represen-

tation and thus have the same sparsity, the intuitive approach is perform clustering on

the patches, where the similar patches are in the same cluster. Thus, the number of

sparsity estimations is reduced dramatically. For example, there are 50000 patches in

our training set and we group them into 50 clusters, therefore we only need to perform

the sparsity estimation for 50 patches (cluster centers) instead of 50000 patches. If

there is a query patch, of which the sparsity needs to be estimated, we search for its

most similar cluster center and then assign the estimated sparsity to this patch.

We intend to use the flat clustering for all the sampled image patches, however,

there is a problem that in some cluster, the number of patchesare too small to form the

reasonable cluster centroid. So, in this paper, we considerthe hierarchical clustering.

Compared with the exhaustively linear search, SVT provides aflexible and efficient

approach to search for the similar patches to the query patch. SVT employs a hier-

archical structure and each of its node is the cluster centerobtained by hierarchical

clustering shown in Fig. 4.3. There are two parameters used in defining the hierarchi-

cal quantization, the branch factor,B, and tree depth,D. Initially, k-means is run on

all of the training data withB cluster centers, after which the data is clustered intoB

groups. The quantization cells are further divided by recursively applying the process

until D levels of the tree are obtained. Finally, the number of leaf nodes is equal to the

number of classes divided for all the training patches. The SVT can be used to narrow

down the search to a small number of sufficiently similar image patches.

Figure 4.3: Example for SVT (B = 3 andD = 2)
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MOEA based sparsity estimation

To estimate the sparsity for each leaf node, we need to solve the sparse representa-

tion vector. One of the most widely-used MOEAs, MOEA/D-DE [107] (MOEA/D in

differential evolution (DE) manner) is applied to solve the sparse coding problem. To

find the true sparsity, the knee region is detected, where theobjectives of sparse cod-

ing solutions (sparse representation vectors) are best comprised. The sparsity of this

patch is set to the sparsity of the solutions in knee region. The entire flow of MOEA

based sparsity estimation is presented in Algorithm 6. In Step 1, the detailed proce-

Algorithm 6: MOEA based sparsity estimation
Input :
D ∈ RN×M: The overcomplete dictionary;
xl

i ∈ RN: The ith leaf node in SVT;
Output :
Sknee: The sparsity of the query patch;

1 for i = 1, . . . , BD do
2 Solve sparse coding for theith leaf node: Apply MOEA/D-DE to solve

(4.3) (wherex is replaced byxl
i) and obtain the approximated PF

{F(α1), . . . , F(αNpop)} and the approximated PSSp = {α1, . . . ,αNpop}.
3 Map l1 norm of PS solutions (f1) into l0 norm and obtain a updated PF:

{F ′(α1), . . . , F
′
(αNpop)}.

4 Delete the dominated points on the update PF and find the knee region
and the threshold point of the updated PF.

5 Determine the patch sparsity,Sknee.
6 end

dure of MOEA/D-DE can refer to [107]. The weighted sum decomposition approach

is adopted, where each subproblem is expressed as follows:

gws
r (x|λr) = λr1||αl

i ||1 + λr2||xl
i − Dαl

i ||22, r = 1, . . . ,Npop (4.4)

whereNpop denotes the number of subproblems. It is noticed that the formula of the

subproblem in (4.4) has the same form with that of well-knownsingle objective op-

timization problem in sparse coding. So, applying weightedsum decomposition can

be regarded as trying the different Lagrangian (tradeoff) parameters for a single ob-

jective problem simultaneously. The cooperation among these subproblems takes the

advantage that the influence of tradeoff relationship on the objectives of the obtained
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solutions can be well explored and some Pareto solutions in the interested region can

also reflect the changing degree of tradeoff. For example, the knee region is defined

as the part of PF in which the objectives of a Pareto solution has the best compromise.

For a MOP with two objectives to be minimized, a little improvement for one objective

would arouse a large deterioration in the other objective.

Algorithm 7: SRGA
Input :
D ∈ RN×M: The overcomplete dictionary;
xq: The query patch;
Es: The set of indexes for nonzero entries ofαknee;
E: The set of indexes for the selected atoms;
B: The set of indexes for all the atoms inD;
Output :
Sq: The sparsity of the query patch;
αq: The sparse representation vector for query patch.

1 Initialization:
2 i = 0;
3 Sq = LB;
4 r0 = xq − D(:,Es)αknee;
5 E = Es;
6 while i ≤ UB− LB do
7 Solvek∗ = argmax

k,k∈B−E
D(:, k)Tr0;

8 E = E ∪ k∗; Solve the sparse representation vector by the least square
method:

9 αq = D(:,E)TD(:,E)−1D(:,E)Txq;
10 Sq = LB+ i;
11 if the coding error does not change in three consecutive iterations then
12 break;
13 end
14 i = i + 1;
15 end

In Step 21, considering thatl1 norm ofαl
i tends to be a continuous function and

there are no significant differences between those of the adjacent solutions, we map

the l1 norm of the solution into itsl0 norm, which more straightforwardly denotes the

sparsity. The mapping function is defined in (4.5).

β
j
k = exp(−α j

k/δ
2); k = 1, · · · ,M; j = 1, · · · ,Npop (4.5)

1For the updated PF:F
′
(α j) = { f ′1(α j), f

′

2(α j)}, j = 1, · · · ,Npop, where f
′

2 = f2 and f
′

1(·) = || · ||0.
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whereδ denotes the sparsity control parameter andα j
k denotes thekth scalar variable

in jth Pareto solutionα j. If α j
k is very small, it becomes a real number close to 1; if it

is a large number, then it turns to be zero. Then, we make the filtering as below.

β
j
k =



1, i f α j
k > T;

0, otherwise
(4.6)

The sparsity ofα j in terms ofl0 norm is obtained by:

||α j ||0 ≈ M −
M∑

k=1

β
j
k (4.7)

By obtaining thel0 norm of the solutions, we usel0 norm instead ofl1 norm to update

the original PF.

In Step 3, since it is very challenging to find the groundtruthextreme Pareto optimal

solutions in our problem, we use the method proposed in [81] to locate the knee points.

ρ(α j
′
,Sp) = min

α
j∈Sp; j′, j

∑
1≤i≤m max(0, fi(α j) − fi(α j

′
))

∑
1≤i≤m max(0, fi(α j′ ) − fi(α j))

(4.8)

whereα j
′
denotes any solution ofSp exceptα j, fi(α j) corresponds to thei-th objective

value of solutionα j andρ(α j
′
,Sp) denotes the least amount of improvement per unit

deterioration while replacing any other solution in PS byα j
′
. It is suggested that

solutions in knee region have the largest value ofρ(α j
′
,Sp). So by setting a threshold

θ, we can determine a limited number of knee points according to (4.9).

Sθknee= {α j
′
|ρ(α j

′
,Sp) ≥ θ,α j

′
∈ Sp} (4.9)

whereSθkneedenotes the set of knee points with the threshold valueθ.

It is not unusual to see that there exists more than one knee regions on the PF. In

sparse coding problem, representation error reflects the quality that the coded image

can achieve. Therefore, to maintain the sparse coding quality, the solution with the

smallestf2 value in knee points, denoted byαknee is usually selected with priority.

Besides, the threshold point on PF in our problem is regarded as the point after
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which all the solutions have little differences in sparse coding error. This threshold can

help to determine the maximum number of representation basis used without much

deterioration in coding quality. To find the threshold point, we conduct two steps: at

first, search for a group of candidate pointsST P according to (4.10).

ST P = {α j || f2(γ) − f2(α
j)|/ f2(α j) < ǫ} (4.10)

whereγ denotes the rightmost point on PF. Then, choose the threshold pointα j∗ based

on (4.11).

α j∗ = min{ f ′1(α j)|,α j ∈ ST P} (4.11)

In step 4,||αknee||0 denotes the number of atoms which have dominant influence

of the coding quality; while the sparsity of threshold pointdenotes the least number

of atoms used to perform a good representation for a noisy signal. According to the

knowledge of transform domain threshold based denoising, aclean signal can be ob-

tained by thresholding smaller coefficients of representation. So for a clean patch,

the sparsitySknee lies between the lower boundLB = ||αknee||0 and the upper bound

UB = ||α j∗ ||0.

Sparsity LUT

After all the leaf nodes in SVT are processed, a group of sparsity values are gathered.

All the values are stored in a LUT which forms a mapping between the node index and

the sparsity.

4.3.4 Online estimation for sparsity of query patch

The query patches are extracted from the test image. For eachquery patch, it will

go through the connected path containingD nodes fromD levels in SVT from top to

down. In depthi = 1, the most similar node with the query patch,N1
b,b = 1, · · · , B,

is selected at first. Then, for depthi = 2, the most similar node is selected among the

nodes connected to the selected one in the previous level denoted byNi−1
b . Then this

procedure is repeated recursively until the leaf nodes are reached. The depth-based
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Figure 4.4: An example of sparsity LUT (9 leaf nodes withB = 3 andD = 2: the
number in gray rectangle denotes the index of leaf node and the contents in white
rectangle denotes the corresponding sparsity range and thepositions of nonzero entries
of αknee.)

search perform faster than the linearly exhaustive search among all leaf nodes. The

similarity is calculated based on the Euclidean distance between the query patch and

the node in SVT and the index for the most similar node can be obtained, according to

which the sparsity range of the query patch can be found in LUT.

4.3.5 Sparsity-restricted greedy algorithm (SRGA)

By knowing the sparsity range and positions of nonzero entries in knee points, we can

obtain the sparse representation vector for a query patch byAlgorithm 7.

In SRGA, the set of active atoms is initialized as the set of nonzero entries in knee

point. The iteration times are also limited by the upper bound. Thus, SRGA only

needs to perform a small number of iterations to converge. The lower bound reduces

the number of iterations which accelerate the algorithm andthe upper bound helps to

maintain the sparse coding quality.
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4.4 Experimental results

4.4.1 Experimental setting

To evaluate the efficiency and effectiveness of our proposed method, experiments on

the benchmark database2 are tested. In offline training phase, we setB = 4 andD = 3

for SVT and 50000 sampled training patches with the size of 8× 8 are randomly

extracted from database. The overcomplete dictionaryD ∈ R64×800 is obtained by K-

singular value decomposition (KSVD) [108]. For MOEA/D-DE, the size of population

is 1000, the chromosome length is set to 800, the number of iterations is 4000 and

the neighborhood size is 20. The setting of DE operators can refer to [107]. In the

experiment, patch based sparse representation are conducted. GivenD, the sparse

representation vector of a query patch,α, is obtained. The recovered image can be

achieved byDα. Then, coding quality is measured in PSNR between the original

image and the recovered image.

4.4.2 Sparsity range

To estimate the sparsity in noisy environment, we add randomGaussian noise with

mean 0 and standard deviation 0.03 to all the leaf nodes. The sparsity range for all

the leaf nodes can be obtained by offline training phase. The graphical illustration of

sparsity estimation for the 2nd leaf node of SVT is presentedin Fig. 4.5, where the

upper limit is 53 and the lower limit is 29.

4.4.3 Compared with the state-of-the-art greedy algorithms

To better demonstrate the effectiveness of our proposed method, we compare the cod-

ing quality (representation error) in terms of PSNR and the coding time with conven-

tional greedy algorithms. For an image to be sparsely coded,we firstly divide it into

non-overlapped patches. Then patch-based sparse coding isadopted. The greedy algo-

rithms for comparison include: OMP with the maximum number of iterations (OMP-

Max), OMP with the sparsity of threshold point (OMP-STP), OMP with sparsity of

2sipi.usc.edu/database/database.php
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Figure 4.5: Graphical illustration for sparsity estimation, where the threshold point is
mark with black dashed square and the knee points are marked in red oval

knee point (OMP-SKP), subspace pursuit (SP) [109] and sparsity adaptive matching

pursuit (SAMP) [97]. We select seven 512×512 representative images for testing. The

experiment on each image is repeated 10 times and the averagenumerical results are

presented in Table 4.1.

It can be observed from Table. 4.1 that in general, the proposed method outper-

forms the compared greedy algorithms both in coding qualityand efficiency. Our

method assigns different sparsities to different patches and for each patch, the sparsity

resulting in best coding quality is selected from the obtained sparsity range. Therefore,

competitive PSNR can be achieved compared with that of SAMP which also selects

the sparsity adaptively. In addition, our method firstly finds out the knee point where

an initial number of atoms that have dominant influence are recognized offline. There

is only a small number of atoms added into the group of representation basis. Thus, a

small number of iterations are desirable, which saves much time.

The average sparsity of each coding method is also compared.As illustrated in Fig.

4.6, the proposed method can achieve the second smallest value among all the tested

methods. Although OMP-SKP use the smallest number of atoms to sparsely code the
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image, the loss of coding quality is also significant. In short, our method can achieve a

competitive sparsity as well as the coding quality.
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Figure 4.6: The sparsity comparison for different approaches

4.4.4 Sensitivity

No matter for the knee solution or the threshold point, the strength of mappingl1 norm

to L0 norm is decided by the sparsity control parameter,δ. Thus, the sparse represen-

tation vector and the estimated sparsity of the query patch may vary. To investigate

the effect ofδ on the sparsity of knee points, we perform one leaf node from SVT and

perform MOEA/D-DE to obtain the PF. By tuning the value ofδ, the corresponding

sparsity range is obtained. As shown in Fig. 4.7, both the upper bound and lower

bound tend to decrease with the augment ofδ. Besides, the sparsity range also shrink

if the value ofδ goes larger. The explanations are as follows: ifδ is small, the number

of zeros in the sparse representation vector is quite small.Thus, we have larger number

of nonzero elements and the value ofl0 norm. On the contrary, whenδ is very large, a

dominant proportion of the elements are filtered as zero and asmall value ofl0 norm

is obtained.

To increase the efficiency of our approach, it is expected that the range should not

be too large. In addition, too small sparsity results in deterioration of coding quality.

So a moderateδ such as 0.0025 or 0.003, is suggested to be used. Due to the page limit,

for the other nodes in SVT, the properδ is obtained by the empirical study introduced



4.5. CONCLUSION 91

above.

1 2 3 4 5 6 7
x 10

−3

0

50

100

150

200

δ value 

S
pa

rs
ity

 

 

LB
UB

Figure 4.7: The effect ofδ on sparsity range

4.5 Conclusion

In this paper, we built an offline training model for adaptively estimating the sparsity

of image patches by using MOEA/D. At first, a large number of training patches are

selected to construct the training set. Then, due to the factthat different patches may

have different sparsities under the same dictionary, a scalable treevocabulary (SVT) is

built based on clustering on the training set and each node inSVT denotes one cluster

center. And MOEA/D-DE is applied to estimate the sparsity of these clustered centers

sequentially. At last, these values of sparsity range are stored in a Look-up table (LUT).

If there comes a query patch, its sparsity range is set to thatof the most similar node

in SVT. Comparing with some state-of-the-art greedy algorithms with fixed sparsity

for all the patches and one adaptive method, it is demonstrated in the experimental

results that our proposed method achieve better performance both in coding quality

and efficiency.

Although MOEAs can achieve competitive results compared with the conventional

greedy algorithm empirically, our proposed method for sparsity estimation is also

largely dependent on the parameter setting. It is essentialto select and determine the

relevant parameters adaptively or in a more intelligent way. More importantly, it is

another issue to theoretically prove the effectiveness of this approach, which is the tar-

get of the future work. In addition, recently, some variantsof MOEA/D are developed
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to improve the performance, such as MOEA/D-IR [110] and stable matching based

MOEA/D [77] [111], which can also be tried and expected to have better results than

those of MOEA/D-DE.
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Image Method PSNR/dB Time/s

Lena OMP-Max 30.79 23.94

OMP-STP 31.46 25.64

OMP-SKP 30.50 10.05

SP 31.50 17.64

SAMP 31.59 16.35

Proposed 31.70 8.35

Peppers OMP-Max 31.22 24.81

OMP-STP 29.62 24.17

OMP-SKP 30.68 11.02

SP 31.18 16.64

SAMP 31.36 15.21

Proposed 31.42 7.75

Girl OMP-Max 30.16 25.69

OMP-STP 30.09 24.49

OMP-SKP 31.87 11.26

SP 31.83 16.53

SAMP 32.14 16.13

Proposed 31.97 8.12

Boat OMP-Max 30.55 26.16

OMP-STP 32.21 24.67

OMP-SKP 30.93 10.96

SP 32.17 15.24

SAMP 32.26 16.13

Proposed 32.28 9.53

Baboon OMP-Max 30.86 24.78

OMP-STP 31.00 23.54

OMP-SKP 30.26 10.73

SP 31.14 16.32

SAMP 31.24 15.48

Proposed 31.40 7.69

splash OMP-Max 29.63 26.21

OMP-STP 31.57 24.16

OMP-SKP 30.31 10.34

SP 31.46 15.64

SAMP 31.64 16.13

Proposed 31.77 7.57

house OMP-Max 30.37 25.54

OMP-STP 29.45 25.06

OMP-SKP 30.43 10.22

SP 30.66 15.23

SAMP 30.57 15.71

Proposed 30.70 8.29

Table 4.1: Statistical results of PSNR and time cost for different approaches
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Chapter 5

Complexity Reduction in

Multi-dictionary based Single-Image

Superresolution Reconstruction via

Phase Congruency

5.1 Introduction

The single-image superresolution reconstruction (SISR) aims to recover the high-resolution

(HR) image from one unique of its corresponding low-resolution (LR) images, which

is regarded as an ill-posed inverse problem. As the degradation type applied to the orig-

inal HR image is unknown, it is a challenge to obtain accuratereconstruction of HR

image. Recently, the example-based methods become increasingly popular in SISR,

which is based on the assumption that the relationship between the LR and HR images

can be built by learning from a group of image samples.

Due to the advantages of utilizing the redundancy and similarity of the images,

the patch-based processing is naturally integrated into the example-based methods.

In [112], pairs of the LR and HR image patches are grouped in a training dataset and

the relationship is investigated based on the assumption oflocal similarity among the

patches in both LR and HR images, which is largely dependent on the quality of the
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selected sample patches. A more efficient and adaptive way is to use the sparse coding

methods in example-based SR. In [113], Yang proposed a sparserepresentation based

SR method, in which the HR and LR dictionaries are trained from the all the image

patches in LR and HR training dataset simultaneously. The target HR patch and its

corresponding LR patch are assumed to share the same sparse representation and each

atom in the dictionaries is involved in representing the image patch adaptively. After

the LR patch is coded with the trained dictionary, the HR patch can be obtained by

the HR dictionary and coded sparse coefficients. This method can achieve superior

performance to some conventional methods. Sparse representation based SR has also

presented in [114], where the single-image SR is formulatedas a problem of sparse

representation under the coupled dictionaries in two spaces (one dictionary for HR

and one for LR). However, the reconstruction images are also degraded by various

artifacts due to insufficient representation by single dictionary. As different patches

have significantly different characteristics, one patch can be reconstructed wellunless

sufficient related information is gathered as much as possible.

To overcome the shortage of single dictionary based SR, multi-dictionary based

SR is proposed and developed in recent years, which adopt multiple pairs of dictionar-

ies to reconstruct each HR patch. Applying the multi-dictionary technique in SR has

shown its advantages in reconstructing various types of images, such as natural im-

age [47] [92], remote sensing [115], textual image [116] anddepth image [117]. The

major steps of these methods are described as follows: At first, the training samples

of LR and HR patches are divided into certain number of groupseither by supervised

or unsupervised learning method. Secondly, the training algorithm is applied to each

group of LR and HR samples to obtain the specific coupled dictionaries, simultane-

ously. Then, the LR patch is sparsely represented by these obtained LR dictionaries,

respectively and its corresponding HR patches with respectto different HR dictionar-

ies are obtained. At last, the final reconstructed HR patch isobtained by aggregating

these HR patches with the weighting average or other selection techniques. Com-

pared with single-dictionary based SR method, the multi-dictionary can achieve better

reconstruction results. However, it is obvious that multiple dictionaries bring huge
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computational burden in the reconstruction process for each patch, which is often un-

expected in electronic devises or imaging systems. Therefore, it is necessary to reduce

the computational cost in the multi-dictionary framework to achieve a fast and accurate

reconstruction.

Phase congruency (PC) [118] is an energy-based feature whichis able to reflect the

importance of the contents in the image in terms of PC map. ThePC value of the pixel

lies between 0 and 1, where larger PC value denotes the pixel is informative which

should be considered more important. In this paper, firstly,we divide the patches in

LR image into two categories by thresholding the PC value, the important ones and

non-important ones. Then, for the important patches, we apply the multi-dictionary

based reconstruction to obtain the HR patches, where the multiple dictionaries are

trained from different groups of clustered samples; meanwhile for the non-important

ones, the single-dictionary which is trained from all the samples in dataset is applied to

reconstruct the HR patches. At last, all the image patches are aggregated by averaging

the intersection of two adjacent patches with overlaps. Theexperimental simulations

on the benchmark images show that the proposed method can achieve competitive re-

construction quality without much degradation compared with that of multi-dictionary

based SR and save much time in reconstruction process.

The rest of the chapter is organized as follows. Section 5.2 introduces the frame-

work of SISR based on multiple dictionaries and followed by the proposed method of

complexity reduction based on PC. The experimental results are presented in Section

5.4 and the concluding remarks are given in Section 5.5.

5.2 SISR based on multiple dictionaries

SISR aims to reconstruct the high resolution image from its one specific low resolution

(LR) image and the problem can be expressed as

Y = HX + n (5.1)
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whereY is low resolution (LR) image,H is the unknown degradation matrix,X repre-

sents the original HR image andn denotes the independent noise.

In the framework of sparse representation based superresolution reconstruction,

the coupled dictionariesDh andDl are trained from the sampled HR patchesXh and

sampled LR patchesXl simultaneously under the condition that each pair of HR patch

and LR patch share the same sparse representation. The jointsparse representation

problem can be expressed as

{Ds, α} = argmin
Ds,α

||Xs− Dsα||2F + λ||α||1 (5.2)

whereα is the sparse coefficient vector,Ds denotes the joint dictionary,λ is the regu-

larization parameter and

Xs =



1√
N

Xh

1√
M

Xl


, Ds =



1√
N

Dh

1√
M

Dl


.

whereM andN denote the length of the vectorized LR and HR image patches.

Considering reconstructing each HR patch by multiple dictionaries, the training

samples of LR patches and HR patches are divided intoK groups by clustering or

classification based on some rules. For the simplicity, we take the clustering method

in [47] as an example. Then the divided training samples which consist of both LR and

HR patches are obtained{X1
h,X

1
l }, {X2

h,X
2
l }, . . . , {XK

h ,X
K
l } andK cluster centers of LR

patchesC1,C2, . . . ,CK are obtained. Then the joint sparse learning process in (5.2) is

applied to each group of the training samples. Thus, the multiple coupled dictionaries

{D1
h,D

1
l }, {D2

h,D
2
l }, . . . , {DK

h ,D
K
l } are obtained.

The sparse representation of LR patchY in Y under thekth dictionaryDk
l , k =

1, . . . ,K is obtained by solving the optimization problem in (5.3).

αk = argmin
α

||Y− Dk
l αk||2F + λ||αk||1 (5.3)

The corresponding HR image patch is obtained byXk = Dk
l αk. The reconstructed
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HR patchX can expressed by the weighting average of the patchesXk.

X =
K∑

k=1

ωkXk (5.4)

where the weightsωk is determined by

ωk =
||Y−Ck||22

K∑
k=1
||Y−Ck||22

(5.5)

After all the HR patches are reconstructed, the overlapped regions of the adjacent

patches are averaged to reduce the block artifact of the image and the reconstructed

HR imageX is finally obtained. The procedure of multi-dictionary based SR is pre-

sented in Algorithm 8.

Algorithm 8: Multi-dictionary based SR
Input:

The LR image:Y;
The trained multiple coupled dictionaries:
{D1

h,D
1
l }, {D2

h,D
2
l }, . . . , {DK

h ,D
K
l }

Output:
The HR image,X;

1: for Y ∈ Y do
2: Calculate the sparse representationαk of X underDk

l , k = 1,2, . . . ,K by (5.3);
3: The corresponding HR patch is obtained byXk = Dk

l αk;
4: The reconstructed HR patch is updated by (5.4);
5: end for
6: Averaging the overlapped region to obtain the final HR imageX.

5.3 Complexity reduction based on PC

5.3.1 Phase congruency

Phase congruency (PC) is regarded as a dimensionless measureof significant structures

in the image, such as the lines, singularities, textures andcorners. The most important

advantage is that PC is invariant to the illumination and contrast and PC at pointx is
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calculated as follows.

PC(x) =
|E(x)|∑
n An(x)

(5.6)

where|E(x)| denotes the local energy andAn(x) represents the magnitude of thenth

Fournier component.

To compute the local energy|E(x)| and the magnitude of scalen An(x), according

to [118], the 2D log-Gabor function in (5.7) in used to convolve with the original 2D

image.

G(ω, θm) = exp

(
− (log(ω/ω0))2

2σ2
r

− (θ − θm)2

2σ2
θ

)
(5.7)

whereω0 is the center frequency of the filter,σr denotes the control parameter for filter

bandwidth,θm = mπ/M,m= 0,1, . . . ,M − 1 is the direction of the filter,M is the total

number of the directions andσθ controls the angle range that the filter can reach.

The response at the pointx of the scalen includes two counterparts the even-

symmetric filtering resulten,θm(x) and odd-symmetric filtering resulton,θm(x). The mag-

nitude ofx on the scalen and the orientationθm can be obtained by

An,θm(x) =
√

(en,θm(x))2 + (on,θm(x))2 (5.8)

Therefore, the local energy in the direction ofθm can be computed as follows.

Eθm(x) =

√
(
∑

n

en,θm(x))2 + (
∑

n

on,θm(x))2 (5.9)

Considering the orientation information in image, substitute (5.8) and (5.9) into (5.6)

and PC is obtained by

PC(x) =
∑

m Eθm(x)∑
n
∑

j An,θm(x)
(5.10)

PC(x) is a real value between 0 and 1 and higher PC indicates that the pixel is

highly informative and belongs to the significant structures in the image.
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5.3.2 Complexity reduction in multi-dictionary SR via Phase Con-

gruency

Phase congruency is a good indicator to judge the significance of the pixels in certain

structure, so we use the PC value to classify the pixels into two categories: important

and unimportant ones. The Wellner’s adaptive threshold [119] which is based on the

local means of the PC value is applied to distinguish the importance of the pixels. For

LR imageY, the threshold matrixT is determined by

T = PC(Y) ∗Gau× (1− p/100) (5.11)

wherePC(Y) denotes the PC map ofY, Gau(u, v) = 1√
2πσ2

e−
u2+v2

2σ2 is the Gaussian low-

pass filter,σ is standard deviation of the Gaussian smoothing, [u, v] determines the size

of the filter andp ∈ [−20,20] is an integer which controls the threshold.

The PC map is transformed into the binary mapPCb(y) by the pixel-wise com-

parison with the thresholdT(y), whereT(y) denotes the threshold for the pixely in

Y.

PCb(y) =



1, PC(y) ≥ T(y), y ∈ Y;

0, PC(y) < T(y), y ∈ Y
(5.12)

In multi-dictionary SR, the LR image is separated into overlappedb × b patches

and the corresponding HR image is reconstructed patch by patch with overlap. So, it

is necessary to evaluate the importance of each LR patch. According to the binary PC

map, we dividePCb(Y) in the same way as the LR image. Thus, the patchesPCb(y) of

PCb are obtained. Then the number of the nonzero pixelsCnz in each patch is calculated

which is regarded as a voting progress. The patch withCnz > ⌈b2/2⌉ is considered as an

important patch, otherwise it is not important. The patch evaluation process is shown

in Fig. 5.1.

Therefore, we integrate this evaluation process into multi-dictionary SR framework

to reduce the computational burden in the reconstruction process. The flow chart of our

proposed multi-dictionary based SR is presented in Fig. 5.2. The patch evaluation is

conducted in the PC space. For the unimportant patches, onlysingle dictionary is used

to reconstruct the HR image.
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Figure 5.1: Patch evaluation process based on binary PC map
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Figure 5.2: The procedure of the proposed multi-dictionarybased SR

5.4 Experimental results

5.4.1 Experimental settings

To evaluate the performance of our proposed dictionary based SR method, the results

of bicubic interpolation, single dictionary based SR [113]and multi-dictionary based

SR [47] are compared in several numerical metrics includingPeak signal-to-noise ra-

tio(PSNR), SSIM [52], MSSIM [120], time cost of reconstruction and operation saving

(OS). OS is defined as the relative reduction of the operation(multiply and plus) times

on each patch.
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OSmulti =
|Tm− T0

m|
T0

m

OSplus =
|Tp − T0

p|
T0

p

(5.13)

whereTm andTp are the multiplying an plus operation times on each patch, respec-

tively. T0
m andT0

p are the operation times of the referenced method. Larger value of OS

indicates that the computational complexity is reduced more significantly.

In the experiment, the LR patch is 3× 3 with 1 overlapped pixel and the zooming

factor is 3. The training set is composed of 50000 pairs of HR and LR patches ran-

domly extracted from the dataset. The clustering is appliedto divide the LR and HR

samples intoK groups to trainK coupled dictionaries. The global coupled dictionaries

Dl andDh are trained from the whole training set. For fairness comparison, the training

algorithm is K-singular value decomposition(KSVD) [121] and the number of clusters

is K = 5. Two 510× 510 images are tested on Matlab 2013a and the numerical result

is the average of 10 runs.

5.4.2 Numerical and visual results

The statistical results are shown in Table. 5.1, in which PSNR (dB), SSIM and MSSIM

are compared. It is noticed that our method outperforms the bicubic and single-

dictionary based method and achieves more or less the same results as that of the

multi-dictionary based SR.

In Table. 5.2, the CPU time cost in the reconstruction processand the operation

times (multiply and plus) compared with the multiple-dictionary based method are

given. It is indicated that our proposed method can significantly reduce the reconstruc-

tion time in multi-dictionary based SR framework.Tm andTp are computed as follows:

For each patch in multi-dictionary based reconstruction, the plus operation which

comes from the weighting average is equal toK−1 and the multiply operation is equal

to K asK dictionaries are involved. However, in our proposed method, there areNtotal

patches andm(m< Ntotal) important patches which useK coupled dictionaries. So the
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(a) Original (b) LR (c) Bicubic interpolation

(d) Single-dictionary (e) Multi-dictionary (f) Lena obtained by our pro-
posed method

Figure 5.3: Comparison of the results: Lena

averaging plus operation for each patch is calculated by

Tp = (Ntotal +m× (K − 1))/Ntotal = 1+
m(K − 1)

Ntotal
(5.14)

and the averaging multiply operationTm is

Tm = ((Ntotal −m) × 1+m× K)/Ntotal = 1+
m(K − 1)

Ntotal
(5.15)

In the results of Table. 5.2,K = 5, Ntotal = 7056 andm is equal to 4100 and 5017

respectively.m is determined by the proposed patch evaluation procedure whent = 20

and the size of Gaussian lowpass filter is equal to 25. So,OSmulti = 17.5% andOSplus =

34% for Lena is obtained andOSmulti = 5% andOSplus = 24% for Peppers. The results

indicate that our proposed method can reduce the computational complexity to some

extent and save the resource cost in reconstruction.

The visual comparison of the SR methods are shown in Fig. 5.3 and Fig. 5.4. It

is demonstrated that our proposed method is able to generateclearer HR image while
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(a) Original (b) LR (c) Bicubic interpolation

(d) Single-dictionary (e) Multi-dictionary (f) Peppers obtained by our
proposed method

Figure 5.4: Comparison of the results: Peppers

preserving sharp edge than Bicubic interpolation and single-dictionary based method.

Besides, it can obtain competitive result with that of multi-dictionary based method.

5.5 Conclusion

In this chapter, we proposed a complexity reduction method in multi-dictionary based

SR via phase PC. The PC map of LR image is extracted and binarized to distinguish

the importance of the image patches. Then the important patches are reconstructed by

multi-dictionary based SR method and the unimportant patches by single-dictionary

based SR. The final reconstructed result is obtained by averaging the overlapped region

between the adjacent patches. Experimental studies demonstrate that the proposed

method can not only achieve competitive results compared with multi-dictionary based

SR method, but also save much time and reduce the computational complexity in the

reconstruction process.
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Images Methods PSNR(dB) SSIM MSSIM

Lena Bicubic 30.79 0.9880 0.8371

Single [113] 31.72 0.9904 0.8442

Multi-dictionary [47] 32.22 0.99150.8486

Proposed 32.20 0.99130.8486

Peppers Bicubic 29.38 0.9868 0.8250

Single [113] 30.09 0.9890 0.8310

Multi-dictionary [47] 30.25 0.9893 0.8322

Proposed 30.25 0.9893 0.8325

Baboon Bicubic 23.18 0.8662 0.6901

Single [113] 23.31 0.9051 0.7031

Multi-dictionary [47] 23.53 0.9223 0.7114

Proposed 23.51 0.9223 0.7112

Barbara Bicubic 26.21 0.9715 0.7962

Single [113] 26.42 0.9821 0.8432

Multi-dictionary [47] 26.64 0.9872 0.8446

Proposed 26.62 0.9820 0.8444

Bridge Bicubic 24.38 0.9671 0.8560

Single [113] 24.72 0.9745 0.8685

Multi-dictionary [47] 24.84 0.9803 0.8732

Proposed 24.82 0.9802 0.8730

Table 5.1: Statistical results of PSNR, SSIM and MSSIM.

Images Methods time cost(s)Tm Tp

Lena Multi-dictionary [47] 405.54 5 4

Proposed 265.30 3.3 3.3

Peppers Multi-dictionary [47] 392.17 5 4

Proposed 297.20 3.8 3.8

Baboon Multi-dictionary [47] 388.25 5 4

Proposed 213.43 3.0 3.0

Barbara Multi-dictionary [47] 395.17 5 4

Proposed 246.23 3.3 3.3

Bridge Multi-dictionary [47] 401.64 5 4

Proposed 221.67 3.1 3.1

Table 5.2: Comparison of the CPU time and operation times on each patch
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Chapter 6

A Phase Congruency based Patch

Evaluator for Complexity Reduction

in Multi-dictionary based

Single-image Super-resolution

6.1 Introduction

In recent years, the demand for high-resolution (HR) images promotes the development

of super-resolution techniques in multimedia-related fields [122] [123]. Single-image

super-resolution (SISR) applies signal processing techniques to recover HR images

from one of its degraded low-resolution (LR) images. To tackle the ill-posed inverse

problem, three categories of methods, including interpolation methods, regularization

methods and example-based methods, are well developed. Among them, example-

based methods have shown its superiority in obtaining a high-quality scaled-up image

[22] [114] [18] by learning the relationship between LR and HR images from a given

set of image samples.

In example-based methods, patch-based processing is usually applied to utilize the

redundancy and similarity among images adequately. For different image patches, dic-

tionary learning (DL) based sparse coding approach provides a global and adaptive
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representation, which has been used in various applications, e.g. image segmenta-

tion [17], medical diagnosis [124], 3D shape estimation [125] and signal reconstruc-

tion [126] [66]. SISR methods based on DL were proposed in [113], [127] and [128],

where SISR was formulated as a problem of sparse coding undera single pair of dic-

tionaries in two spaces (one dictionary for HR and one for LR).The target HR patch

and its corresponding LR patch were assumed to share the samesparse representation

under two-coupled LR and HR dictionaries. Therefore, afterLR patch was sparsely

represented by LR dictionary, the corresponding HR patch could be obtained by HR

dictionary and the sparse coefficients.

It is often the case that an image patch may contain the pixelsfrom different struc-

tures, such as line segments, textures, abundant edges, corners, smooth regions or

the combination of these structures. Although some regularization terms are added

into SISR model to enhance the sparse representation capability in [129] [130], it is

still insufficient and inaccurate to use one single dictionary to sparsely represent the

LR patches [47]. To overcome the shortage, multi-dictionary based SISR (MDSISR)

which adopts multiple pairs of dictionaries to reconstructone HR patch is proposed for

various types of images, such as natural image [92] [131], remote sensing image [115],

textual image [116] and depth image [117]. However, multiple dictionaries usually re-

sult in huge computational burdens in the reconstruction process, which is not expected

in electronic devices or imaging systems. In addition, for some patches that belong to

a single structure, such as textures, over-smoothness may be caused by using multi-

ple dictionaries, which even degrades the reconstruction quality. In fact, due to the

redundancy of dictionary atoms and compactness of sparse representation [121] [132],

a single dictionary performs rather competitively in reconstructing the patches with a

single type of structure. Therefore, to reduce the computational cost and maintain the

reconstruction quality simultaneously, it is desirable toadaptively reconstruct the LR

patches based on the complexity of structures they contain.

To measure the complexity of the structures, it is useful to extract certain features.

Phase congruency (PC), a local energy based indicator, is proved to be effective in

distinguishing the informative structures, such as line segments, singularities, textures,
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edges and corners from smooth regions [118] [133]. Recently,exploiting PC fea-

tures has shown its great potential in image or video processing applications, such as

verification and identification [134], image registration [135] and foreground extrac-

tion [136]. However, it is difficult to measure the complexity of the patches directly

based on PC values as one patch may consist of the pixels from multiple informative

structures mentioned above.

In this paper, a PC based patch evaluator (PCPE) is proposed toclassify the patches

into three categories: significant, less-significant and smooth patches. The significant

patch contains the pixels from more than one types of informative structures, the less-

significant patch consists of only one single informative structure and the smooth patch

contains the smooth region. Different from using binary PC map in [93], PCPE em-

ploys a hierarchical structure, where the first level divides the patches into smooth

patches and non-smooth patches and in the second level, clustering is applied to parti-

tion the non-smooth patches into the significant patches andless-significant patches.

We integrate PCPE into the conventional framework of MDSISR. For significant

LR patches, multiple dictionaries are applied to reconstruct the HR patches to main-

tain high reconstruction accuracy. While for the less-significant ones, the faster ap-

proach, single dictionary is used to recover the corresponding HR patches more effi-

ciently without much deterioration in quality. In addition, bicubic interpolation, which

performs fast and effective in scaling up the smooth region of the images is applied

to restore the HR patch of a smooth LR patch. Experimental studies on the bench-

mark database demonstrate that our proposed PCPE-MDSISR canachieve compet-

itive reconstruction quality without much deterioration compared with conventional

MDSISR and save much time in reconstruction process. Particularly, by using Zeyde’s

method [127] as a baseline, PCPE-MDSISR also outperforms some state-of-the-art

SISR methods in PSNR, SSIM and FSIM.

The rest of this chapter is organized as follows. Section 5.2introduces the related

works and the background followed by our proposed PCPE-MDSISR in Section 6.2.

The experimental studies are given in Section 6.3. And the conclusion is finally made

in Section 6.4.



6.2. THE PROPOSED PCPE-MDSISR 109

6.2 The Proposed PCPE-MDSISR

6.2.1 Motivation of using PC map and binary PC map

(a) Lena (b) Peppers (c) Baboon (d) Splash (e) Girl (f) House (g) Boat

(h) (i) (j) (k) (l) (m) (n)

(o) (p) (q) (r) (s) (t) (u)

Figure 6.1: The test images (the first row), corresponding PCmaps (the second row)
and gradient maps (the last row)

From Fig. 6.1, the differences between PC feature and gradient feature lies in three

aspects: at first, PC can be used to detect more than one type ofstructures in an image

at one time; secondly, PC is invariant to the illumination and contrast of the images

which is more robust to identify the informative pixels; at last, PC can recognize not

only the isolated structures, such as the edge and corner, but also the pixels surrounding

them, which makes it very suitable for patch-based operation.

In Fig. 6.2, it is noticed that the occurrences of PC values inan image follows a

power-law distribution. There is a large number of pixels whose PC values are close to

zero but only a few number of pixels have very large PC values (when the interval of

the x-axis is approaching to infinitesimal). Such a distribution of PC values is helpful to

distinguish the pixels. The pixels in the informative structures, such as line segments,

singularities, textures, edges, and corners have larger PCvalues; while for the pixels

in smooth region, PC values of these pixels are very small. According to [118], a

threshold of 0.3− 0.4 is usually applied.

In MDSISR, LR image is partitioned into overlapped isometricpatches. A patch
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Figure 6.2: The distribution of PC values in images. Histograms of the distribution of
pixels in PC maps, where the width of each pin is equal to 0.01 (Only two images are
presented here, because the distribution in other images are quite similar).

often contains pixels from more than one structures. The informativeness of the pixels

across different structures may vary dramatically, which brings the difficulty in evalu-

ating the patches.

In [137] and [138], the average value of PC is deployed as one of the perceptual

features for image quality assessment, which reflects the structural significance of the

image. As shown in Fig. 6.3, the average PC value for each patch in LR image is

computed, and the corresponding histogram is obtained. It is observed that a large

proportion of the patches in an image have the average PC value smaller than 0.3. It is

likely that some patches with different patterns share the same average PC value. For

example, in Fig. 6.4, patch A and patch C have the same averagevalue, 0.45, but they

belong to different structures in original LR image. So, the standard deviation of PC

values in each patch,δ, should be considered, where a largerδ indicates that the patch

contains pixels from more than one structures; a smaller onemeans that the patch is

composed of a single structure.

Therefore, the significant value (SV) for theith patch is defined in (6.1).

S Vi =
µi

δi + ǫ2
(6.1)

whereµi andδi denote the mean value and standard deviation of all the PC values in

the ith patch of PC map, respectively.ǫ2 is a relatively small positive constant.

We use four patterns to represent the patches in PC map. a) high µ and highδ; b)

high µ but low δ; c) low µ but highδ; d) low µ and lowδ. Suppose the patches have
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highµ (containing the pixels from informative structures), where larger value denotes

the patch contains the pixels from one single informative structure, and smaller value

means the patch has more than one informative structures.

But (6.1) does not always work unless we can firstly identify the insignificant

(smooth) patches. For instance, in Fig. 6.4,δi in patch B (an insignificant patch) is

very close to zero or very small. Althoughµi is small, patch B may have compara-

ble S Vi with patch A or patch C. So, it is not trivial to directly decidethe boundary

between patch B and patch A or patch C by (6.1). To identify theinsignificant (or

smooth) patch, we use a binary PC map suggested in [139]. For instance, in Fig. 6.4,

the corresponding patch A, B, C and D in the binary PC map are presented, where

patch B (a smooth patch in LR image) and patch D significantly differ from patch A or

C in the number of white pixels. To better categorize patch A and patch C, we need to

remove the interference of insignificant (smooth) patches such as patch B (pattern d)

and patch D (pattern c).
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Figure 6.3: The distribution of the average PC value in a patch

6.2.2 Patch evaluation based on PC map

Based on the complexity of the contents that a patch contains,we divide the patches

into three categories: significant, less-significant and insignificant (smooth). The sig-

nificant patch consists of the pixels from more than one informative structures. The

less-significant patch contains the pixels from one single informative structure. And

the smooth patch is made up of non-informative pixels measured by PC.

The patch evaluation process is shown in Fig. 6.4, where the patch marked with
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red square denotes the significant patch (e.g patch C), the green one represents less-

significant patch (e.g. patch A) and the blue one stands for the smooth patch (e.g. patch

B).

1 2

3

C

B

A

B

C

A

D

D

Figure 6.4: Procedure of PC map based patch evaluation

In step 1, a PC map of LR imageY, PC(Y), is obtained.

In step 2, based on the PC map, the pixels inY can be classified into two categories.

One belongs to the informative structures; the other is included in smooth region. This

allows one to specify a threshold to distinguish the pixels.Rather than setting a fixed

threshold, an adaptive threshold [119] based on the local means of pixels is applied,

where the threshold matrixT is determined by

T = PC(Y) ∗Gau( f , σ) × (1− t/100) (6.2)

whereGau( f , σ) denotes the Gaussian lowpass filter to calculate the local mean of the

PC values,f is the number of pixels around the centered pixel used to compute the

local means,σ is the smoothing parameter andt ∈ [−20,20] is an integer that controls

the range of threshold.PC(Y) is transformed into the binary PC mapPCb(Y) by the

pixel-wise comparison with the threshold,T(y), according to (6.3), whereT(y) denotes

the threshold for the pixely in PC(Y). In PCb(Y), PCb(y) = 1 indicates that the pixely

is in the informative structure of the image, otherwise it belongs to the smooth region.

PCb(y) =



1, PC(y) ≥ T(y), y ∈ Y;

0, PC(y) < T(y), y ∈ Y
(6.3)
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In step 3, according to the PC map and the binary PC map, significant, less-

significant and smooth patches are obtained. The detailed procedure for step 3 is

illustrated in Fig. 6.5.
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Figure 6.5: Patch evaluation based on PC map

The patches are extracted in a raster scan way (from up-left to down-right). In

Fig. 6.5, the number of the nonzero pixels,NZi, in the ith patch of binary PC map

is calculated. Then, a hierarchical clustering is used to group the patches into three

categories. At the first layer, k-means clustering is applied to NZis and the patch with

higherNZi belongs to non-smooth patches while the patch with smallerNZi is regarded

as a smooth patch which is mainly composed of non-informative pixels. The advantage

of clustering lies in the fact that it can automatically determine the boundary between

two groups according to the distribution of the dataNZi. Before the clustering,NZi is

normalized by

NZi =
NZi

b2
(6.4)

At the second layer, the non-smooth patches in PC map are extracted. From (6.1), it

is indicated that the patch with largerS Vi contains one single informative structure as

the standard deviation is small, which is regarded as a less-significant patch. IfS Vi is

smaller, the patch should contain more than one informativestructures, as the standard

deviation is larger compared with the single structure. Then, the patch is a significant

patch. To obtain the less-significant patch and significant patch, k-means clustering is

applied toS Vis.

It is noticed that in the first layer, the number of pixels usedto calculate the local

means are usually larger than the number of pixels in a patch.In other words, the

pixels in the adjacent patches are also involved in obtaining the binary PC map. In the

second layer, only the PC values in a patch are considered to compute SV. Therefore,

in the hierarchical clustering method, both the inter-patch and intra-patch information



6.2. THE PROPOSED PCPE-MDSISR 114

are utilized to partition the patches in an unsupervised manner.

6.2.3 The framework of PCPE-MDSISR

The PC map based patch evaluation process (PCPE) is integrated into the MDSISR

framework. The flow chart of our proposed PCPE-MDSISR is presented in Fig. 6.6.

The patch evaluation is conducted in the PC space. For the significant patches,

to maintain the recover precision, it is necessary to apply multiple dictionaries, each

of which is trained from respective cluster of patches with the similar structures. For

the less-significant ones, the global dictionary (which is trained from all the sampled

patches) is applied to reconstruct the HR image, providing afaster reconstruction com-

pared with the conventional MDSISR. In addition, bicubic interpolation (BI) is ap-

plied to achieve an efficient reconstruction for the whole image, where the HR smooth

patches are directly preserved in the reconstructed HR image, because interpolation-

based methods have been proved to be very efficient in dealing with the smooth region

in SISR. In this paper, we apply Zeyde’s implementation [127]as a baseline for DL

based SISIR. For MDSISR, Zeyde’s method are also extended by multiple dictionaries

in the way described in Section 5.2. The detailed procedure of PCPE-MDSISR is given

in Algorithm 9.

Input LR imageInput LR image

Patch evaluationPatch evaluation

Patch aggregationPatch aggregation

utpt ut HR imageOutput HR image
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Figure 6.6: The procedure of the porposed PCPE-MDSISR
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Algorithm 9: PCPE-MDSISR
Input:

The LR image:Y;
The trained multiple coupled dictionaries:
{D1

h,D
1
l }, {D2

h,D
2
l }, . . . , {DK

h ,D
K
l }

The trained global coupled dictionaries:{Dgh,D
g

l }
Output:

The reconstructed HR image,X̂;
1: PC based patch evaluation for all the patches inY ;
2: Apply bicubic interpolation to LR image and obtain initial reconstructed image

X̂0;
3: for yi ∈ Y do
4: if Yi is a smooth patchthen
5: X̂(i) = X̂0(i);
6: else ifYi is a significant patchthen
7: Compute the sparse representation ˆsk

i of yi underDk
l , k = 1,2, . . . ,K by (5.3),

respectively;
8: The corresponding HR patch is obtained by ˆxk

i = Dk
l ŝk

i ;
9: The ith reconstructed HR patch ˆxi is aggregated by (5.4);

10: else
11: Compute the sparse representation ˆsgi of yi under the global dictionaryDgl by

(5.3);
12: The ith reconstructed HR patch ˆxi = Dghŝgi ;
13: end if
14: end for
15: Average the overlapped region to get the final HR imageX̂.

6.2.4 Computational cost reduction in PCPE-MDSISR

For each patch in MDSISR, the plus operation which comes from the weighting aver-

age ofK components is equal toK − 1 and the multiply operation is equal toK. The

average multiply times for each patch,Tm, and the average plus times,Tp, in PCPE-

MDSISR are computed as follows:

Tm = (m2 × 1+m1 × K)/Ntotal =
m2 + Km1

Ntotal
(6.5)

Tp = (m1 × (K − 1))/Ntotal =
m1(K − 1)

Ntotal
(6.6)
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where there areNtotal patches in total,m1 significant patches which useK coupled

dictionaries,m2 less-significant patches andm3 smooth patches withNtotal = m1+m2+

m3. The bicubic interpolation runs very fast to obtain the whole HR image which is

less than one second. So, the operation on smooth patches canbe ignored compared

with the dictionary based methods.

In (6.5), whenK > 1,m1,m2,m3 > 0, we can come up with the inequalities as

follows:
m2 + Km1

Ntotal
<

K(m1 +m2)
Ntotal

<
KNtotal

Ntotal
= K (6.7)

And in (6.6), it is obvious thatm1(K−1)
Ntotal

< K−1, which indicates that in PCPE-MDSISR,

the multiply times and plus times for each patch is smaller than MDSISR.

Although patch-wise operation is applied in MDSISR, it is also necessary to in-

vestigate the operation saving for each pixel as bicubic interpolation is conducted in a

pixel-wise way. To generate each pixel in HR patch for a significant patch, it requires

L multiply andL − 1 plus operation for each dictionary, whereL denotes the number

of atoms in a dictionary. ForK dictionaries, we needKL multiply andK(L − 1) plus

operations, respectively. Besides, in the process of calculating weighted average of

K components reconstructed byK coupled dictionaries, additionalK − 1 plus opera-

tion andK multiply operation are needed. Thus, for each pixel in a significant patch,

(K + 1)L multiplying andKL − 1 plus operations are needed, respectively. For a less-

significant patch, each pixel is obtained byL multiply andL − 1 plus operations. It

is noticeable that bicubic interpolation is applied to the whole image. Thus, for a LR

imageY ∈ ZM×N with a magnifying factorF, the number of interpolated pixels is equal

to (F2 − 1)MN. According to [140], each interpolated pixel is obtained byB× = 70

multiply andB+ = 45 plus operations. Therefore, in PCPE-MDSIDR, for each pixel

in HR image, the average multiply and plus operations can be computed as follows:

Bm =
m1F2b2(K + 1)L +m2F2b2L + B×(F2 − 1)MN

F2MN
(6.8)

Bp =
m1F2b2(KL − 1)+m2F2b2(L − 1)+ B+(F2 − 1)MN

F2MN
(6.9)
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In MDSISR, all the patches are treated equally as significant patches. The aver-

age multiply and plus operations per pixel are equal toB0
m =

Ntotalb2(K+1)L
MN and B0

p =

Ntotalb2(KL−1)
MN , respectively.

Theorem 1 When K> 1,m1,m2,m3 > 0, if m2+m3
Ntotal

> max( 70
KL ,

45
L(K−1)), where L denotes

the number of atoms in one dictionary, the average operationtimes per pixel in PCPE-

MDSISR is smaller than MDSISR.

TheProof of Theorem 1can refer to 6.5.

It is indicated that when the proportion of less-significantand smooth patches in

total to Ntotal is greater thanmax( 70
KL ,

45
L(K−1)), the proposed PCPE-MDSISR can re-

duce the computational cost for each pixel. SinceL >> B×, 70
KL and 45

L(K−1) are very

small. According to [113],L is set 1000 to achieve high reconstruction accuracy.

Therefore, as long as the number of less-significant and smooth patches takes up more

thanmax( 7
K ,

4.5
K )%, the required number of multiplying and plus operations in PCPE-

MDSISR are less than those of MDSISR.

6.3 Experimental studies

To evaluate the performances of our proposed PCPE-MDSISR, we conduct experi-

ments on 14 representative images from benchmark database in [127]. All the experi-

ments are processed on the computer Core i7 3.4GHz with 8GB RAM.

6.3.1 Experimental settings

The training set for dictionaries

The training set is composed of 50000 pairs of HR and LR patches randomly extracted

from the training images used in [113], including various types of images, such as

plants, human faces, animals, architectures and cars. The training set of HR and LR

patches are grouped intoK clusters by k-means clustering, respectively. The corre-

sponding coupled dictionaries can be trained from each cluster of training patches. For

the global coupled dictionariesDgh andDgl , they are trained from the whole training set
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which consists of different structural elements. For fairness comparison, the training

algorithm is K-SVD [121]1.

Parameter settings

In the experiment, the input LR image patch is 3× 3 with 1 overlapped pixel among

the adjacent patches. The number of clusters is set asK = 5. The zooming factor is 3,

which indicates that the LR image is obtained by downsampling the original HR test

image by a 3×3 factor and the corresponding HR patch is 9×9 with overlap of 3 pixels

in HR patch.

Quality assessment metrics

The Peak signal-to-noise ratio (PSNR), Structural similarity index (SSIM) [52] and

Feature Similarity (FSIM) are used to assess the quality of the reconstructed HR image.

SSIM and FSIM are real values between 0 and 1, where larger value denotes higher

similarity between the two compared images.

Besides the time cost of reconstruction, operation saving (OS) is considered, which

is defined as the relative reduction of the average operation(multiply and plus) times

per patch and per pixel.

OSpatch
× =

|Tm− T0
m|

T0
m

OSpatch
+ =

|Tp − T0
p|

T0
p

(6.10)

whereTm andTp denote the average multiply and plus operation times for each patch,

respectively.T0
m andT0

p are the operation times in MDSISR.

OSpixel
× =

|Bm− B0
m|

B0
m

OSpixel
+ =

|Bp − B0
p|

B0
p

(6.11)

1The matlab code is available at http://www.cs.technion.ac.il/ elad/software/.
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Images
Methods

BI Zeyde’s [127] ANR [18] A+ [19] MLM [131] MDSISR Proposed

Baboon

23.18 23.46 23.57 23.61 23.74 23.87 23.77

0.6902 0.7158 0.7164 0.7165 0.7172 0.71870.7188

0.9256 0.9563 0.9570 0.9571 0.9578 0.9596 0.9594

Barbara

26.21 26.83 26.71 26.52 26.62 26.92 26.86

0.7963 0.8452 0.8448 0.8422 0.8445 0.8627 0.8622

0.9365 0.9546 0.9543 0.9535 0.9541 0.9612 0.9608

Bridge

24.40 24.97 25.02 25.22 25.25 25.36 25.28

0.8562 0.8702 0.8711 0.8852 0.8860 0.8872 0.8868

0.9256 0.9405 0.9417 0.9503 0.9516 0.9527 0.9524

Coastguard

26.58 27.07 27.11 27.37 27.42 27.61 27.54

0.8842 0.8992 0.8996 0.9115 0.9133 0.9160 0.9156

0.9475 0.9602 0.9607 0.9630 0.9640 0.9655 0.9652

Comic

23.12 23.97 24.02 24.38 24.46 24.52 24.45

0.8653 0.8836 0.8843 0.8995 0.9013 0.90220.9024

0.9649 0.9786 0.9801 0.9831 0.9848 0.9858 0.9855

Face

32.78 33.48 33.61 33.82 33.78 33.90 33.84

0.8906 0.9128 0.9207 0.9289 0.9283 0.9312 0.9308

0.9631 0.9785 0.9846 0.9897 0.9891 0.9903 0.9899

Flowers

27.18 28.38 28.49 29.05 28.83 28.86 28.62

0.7966 0.8286 0.8324 0.8578 0.8533 0.8540 0.8538

0.9267 0.9478 0.9501 0.9534 0.9518 0.9526 0.9524

Foreman

31.18 33.22 33.20 34.28 33.98 33.77 33.64

0.8993 0.9232 0.9231 0.9378 0.9306 0.9287 0.9285

0.9815 0.9903 0.9902 0.9923 0.9912 0.9907 0.9906

Lena

31.69 32.98 33.13 33.52 33.63 33.72 33.65

0.8762 0.8817 0.8836 0.8845 0.8849 0.8855 0.8855

0.9741 0.9871 0.9877 0.9881 0.9884 0.9887 0.9885

Man

27.02 27.91 27.94 28.30 28.42 28.51 28.46

0.8754 0.9048 0.9056 0.9218 0.9250 0.9269 0.9260

0.9465 0.9768 0.9778 0.9825 0.9831 0.9837 0.9835

Monarch

29.40 31.12 31.14 32.12 31.76 31.89 31.80

0.9012 0.9235 0.9238 0.9422 0.9316 0.9365 0.9363

0.9573 0.9710 0.9712 0.9864 0.9819 0.9836 0.9834

Pepper

32.39 34.11 33.83 34.69 34.72 34.81 34.76

0.8706 0.8854 0.8837 0.8861 0.8862 0.8864 0.8862

0.9737 0.9854 0.9846 0.9861 0.9862 0.9863 0.9862

ppt3

23.68 25.20 25.01 26.10 25.96 26.22 26.15

0.8755 0.9021 0.9002 0.9335 0.9276 0.9363 0.9358

0.9451 0.9662 0.9650 0.9734 0.9706 0.9756 0.9753

Zebra

26.61 28.50 28.38 29.02 28.97 29.14 29.05

0.8781 0.9068 0.9055 0.9213 0.9201 0.92280.9229

0.9336 0.9587 0.9546 0.9689 0.9677 0.9716 0.9710

Table 6.1: Statistical results of PSNR/dB, SSIM and FSIM
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whereBm andBp denote the average multiply and plus operation times for each pixel,

respectively. A Larger OS indicates that the computationalcomplexity is reduced more

significantly.

6.3.2 Comparison of Numerical and visual results

(a) Original (b) BI (c) zeyde’s (d) ANR

(e) A+ (f) MLM (g) MDSISR (h) PCPE-MDSISR

Figure 6.7: Reconstructed HR images of Lena by different methods

The bicubic interpolation (BI) method, Zeyde’s method [127], MLM [131]2, ANR

[18], A+ [19] and MDSISR based on Zeyde’s method are compared with theproposed

PCPE-MDSISR. The numerical results are the average of 20 runs given in Table. 6.1,

where PSNR, SSIM and FSIM are compared. In the experiment, as human visual

system (HVS) is more sensitive to the change of luminance in the image, we only

reconstruct the luminance component (Y channel in YCbCr colormodel) by different

methods. For the other two components (Cb&Cr), bicubic interpolation is applied

to obtain the corresponding HR components. To get the luminance component, the

image in RGB model is firstly transformed into YCbCr model, whereY denotes the

luminance component. To determine the adaptive threshold in PC map, the size of

filter is 30 and the control parametert = 0.

In Table. 6.1, it is noticed that the proposed PCPE-MDSISR outperforms BI,

2MLM1, the basic version is used.
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(a) Original (b) BI (c) zeyde’s (d) ANR

(e) A+ (f) MLM (g) MDSISR (h) PCPE-MDSISR

Figure 6.8: Reconstructed HR images of Baboon by different methods

Zeyde’s, ANR and MLM but achieve competitive results with those of MDSISR and

A+ in terms of PSNR, SSIM and FSIM. Since the aim of PCPE-MDSISR is to reduce

the computational complexity in conventional MDSISR, it is reasonable for PCPE-

MDSISR to obtain competitive reconstruction results compared with MDSISR with-

out significant deterioration. For SSIM, the results for some test images are even better

than those of MDSISR, because for some patches which containsonly single informa-

tive structure or smooth region, applying multi-dictionary based reconstruction may

result in over-smoothness in these structures. Instead, using the single dictionary can

properly recover the structure. Besides, interpolation based method provides relatively

fast and accurate reconstruction for smooth patches [141].By comparison, it is also

found that the deterioration of FSIM is the smallest which indicates that PC feature

take effect in detecting and preserving the informative structuressuch as edges, cor-

ners, line segments and textures accurately.

The original HR image and the visual comparison of reconstructed HR images,

the image of lena and baboon, are presented in figures. 6.7 and6.8. It can be found

that BI generates more smooth edges and textures in HR image. Although Zeyde’s

method is able to obtain better result, there exists many significant ringing artifacts

on the edges of the image and some structures are not maintained well in HR image,
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resulting the degradation in visual quality. A+, MDSISR and PCPE-MDSISR provide

more competitive visual results, where the sharpness of theedges and corners are well-

preserved and the textures are recovered more precisely.

It is also worth mentioning that A+ uses a large number of the local regressors to

set up the relationship between the LR and the HR patch, whichcould be very help-

ful to keep the details and maintain the sparsity. The multi-dictionary based method,

MDSISR may result in some over-smoothness of the region since too many atoms

are involved in the sparse regression and the sparsity across different dictionaries is ig-

nored. Even though some satisfactory results can be obtained by setting a large number

of dictionaries, how to overcome the over-smoothness and further increase the image

quality is still a question to be resolved in the future.

The comparison for running time of different SISR approaches are given in Fig.

6.9, where the results of 14 test images are included. It can be concluded that both

ANR and A+ cost the least time in reconstruction process. Although MDSISR is able

to achieve the best reconstructed HR image, it requires the most running time. Com-

pared with conventional MDSISR, our proposed PCPE-MDSISR cansave almost half

of the running time meanwhile maintaining a competitive reconstructed result, which

improve the efficiency significantly. In PCPE-MDSISR, the patch evaluation process

only requires less than 2s and bicubic interpolation is completed in about 0.1s to ob-

tain the whole HR image, which is much smaller compared with recovering several

HR patches by multiple dictionaries. In addition, the time cost of PCPE-MDSISR is

also comparable with that of Zeyde’s baseline method.

6.3.3 Comparison of computational cost reduction

To further evaluate the capability of computational cost reduction of PCPE-MDSISR,

MDSISR and the method based on binary PC map in [93] are used. The average

operation times (multiply and plus) are given in Table. 6.2,where the results of five

selected test images are presented.

In Table. 6.2, the average multiplying and plus operation times for each patch and

each pixel are given.Tm, Tp, Bm and Bp The average result are obtained by trying

out different combinations of parametersf andt in the adaptive threshold, where the
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Figure 6.9: Comparison for running time of different SISR methods

Images Methods Tm Tp OSpatch
× OSpatch

+ Bm Bp OSpixel
× OSpixel

+

Lena MDSISR 5.0 4.0 − − 13184.2 10984.7 − −
Binary PC map 3.2 3.2 36% 20% 7679.6 5467.3 41.8% 50.2%

Proposed 2.7 2.1 46% 47.5% 6953.9 5173.8 53.0% 52.9%

Peppers MDSISR 5.0 4.0 − − 13184.2 10984.7 − −
Binary PC map 3.3 3.3 34% 17.5% 8094.5 6247.2 38.6% 43.1%

Proposed 2.7 2.1 46% 47.5% 7015.3 5855.1 46.8% 46.7%

Barbara MDSISR 5.0 4.0 − − 13184.2 10984.7 − −
Binary PC map 3.4 3.4 32% 15% 8738.0 6550.3 33.7% 40.4%

Proposed 2.8 2.2 44.0% 45.0% 7192.4 6003.5 45.4% 45.3%

Baboon MDSISR 5.0 4.0 − − 13184.2 10984.7 − −
Binary PC map 3.0 3.0 40% 25% 7587.0 5402.4 42.5% 50.8%

Proposed 2.2 1.7 56.0% 45.0% 5827.4 4867.2 55.8% 55.7%

Bridge MDSISR 5.0 4.0 − − 13184.2 10984.7 − −
Binary PC map 3.1 3.1 38% 22.5% 7991.5 5805.7 39.4% 47.1%

Proposed 2.6 2.0 48% 50.0% 6401.2 5342.3 51.4% 51.3%

Table 6.2: Comparison of the number of operations and averageoperation saving

integer f ∈ [10,45] with interval of 5 andt ∈ [−20,20] is an integer with interval of 5.

In our experiment,m1, m2 andm3 are determined by the patch evaluation process. For

example, whenf = 45 andt = 20,Ntotal = 7056,m1 = 3618,m2 = 532 andm3 = 2906

are obtained for baboon.{Tm, Tp} is {2.6, 2.1} for baboon according to equation (6.5)

and (6.6). The correspondingOSpatch
× andOSpatch

+ can be obtained by equation (6.10).

It is observed that PCPE-MDSISR can achieve on average 56% reduction in Tm and

45% in Tp, which indicates that PCPE-MDSISR is able to reduce the computational

complexity significantly and save much computational cost in reconstruction.

For each pixel, the proposed PCPE-MDSISR also requires a smaller number of
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Figure 6.10: Hierarchical clustering results

multiplying and plus operations in reconstruction and savemuch computing resources

compared with MDSISR. For the test images, PCPE-MDSISR outperforms the com-

pared method inOSpixel
× with a 13.3% gain andOSpixel

+ with a 4.9% increase at most.

6.3.4 Comparison with sparse group lasso

The sparse group Lasso [142] also considers the sparse representation among different

groups, which is usually applied to obtain discriminative representation for regression

and classification. In our proposed PCPE-MDSISR, we solve the global and local

sparse representation, respectively rather than integrate them into one representation

model (group lasso have two regularization parameters which are difficult to balance).

The sparse group lasso is applied as the sparse representation method for each

patch and the PSNR results are listed in Fig. 6.11. In this experiment, both the reg-

ularization parameters are set to 0.5 and the sparsity is 20% of the length of sparse

representation vector. It can be concluded that the proposed method has gained 0.1-

0.2dB improvement compared with sparse group lasso based method. Group lasso
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Figure 6.11: PSNR comparison between sparse group lasso andthe proposed method

considers the sparse representation among different groups, thus there is a lot of re-

dundant information for each patch. Then, some over-smoothness and degradation

over the smooth region can be caused. Besides, the sparsity isalso difficult to control

by using sparse group Lasso. In short, PCPE-MDSISR is more related to methodol-

ogy in reconstruction task while group lasso concerns more on the classification and

regression model.

6.3.5 Results of hierarchical clustering

The partition of significant patches, less-significant patches and smooth patches is au-

tomatically determined by hierarchical clustering. In Fig. 6.10, the clustering results

are shown, in which the first layer and second layer are included when f = 25 and

t = −20.

It can be seen from Fig.6.10 that more than half of all the patches are considered as

smooth patches, which are directly reconstructed by BI and inthe non-smooth patches,

significant patches takes up a dominant proportion comparedwith less-significant ones.

Since only the non-smooth patches need to be reconstructed by dictionary-based method,

it requires less computational cost compared with MDSISR.

6.3.6 The impact of the number of significant patches

The number of significant patches,m1, greatly affects the operation saving and the

reconstruction quality in the reconstruction. In Fig. 6.12and Fig. 6.13, the relation-

ship betweenm1 and multiply operation saving,OSpatch
× , and betweenm1 and MSE of
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reconstructed HR image are plotted in a three-dimensional coordinates.
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Figure 6.12: The relationship amongm1, MSE andOSpixel
× , image of girl, whent =

−15,−5,5
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Figure 6.13: The relationship amongm1, MSE andOSpixel
× , image of Boat, whent =

−15,−5,5

In Fig. 6.12 and Fig. 6.13 , it is observed that MSE decreases with the increase

of m1, which indicates that more significant patches help to improve the quality of

the reconstructed HR image. Whenm1 becomes smaller, the multiply operation sav-

ing increases significantly, because the significant patches cost more computational

resources. It is also found that the operation saving and MSEhave generalized tradeoff

relationship under different settings oft.

In a real application, it is an interesting issue to find the balance between the com-

plexity reduction and quality degradation. For example, decision makers can select the

point with the best compromise based on knee detection approach or his preference.

As we don’t focus on this issue, the discussion is not extended in this paper.
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6.3.7 The effect of the parameters

The effect of f and t on the reconstructed HR image are investigated. We study the

relationship betweenf andm1, m2, andm3 under different values oft, respectively. We

take the image of Lena for instance.

In Fig. 6.14, it is noticed that the number of less-significant is much smaller than

that of significant patches or smooth patches, which followsthe real situation that

only a small number of patches contains single informative structures. For eacht,

the number of significant patches increases with the augmentof size of f . It can be

explained as follows:

1) More pixels are used to calculated the local mean, which isset as the adaptive

threshold, the threshold tends to be smaller and more informative pixels are kept.

Therefore, the number of non-smooth patches (the sum of significant patches and

less-significant patches) rises;

2) The number of less-significant patches does not change significantly with respect

to f and its increase can be ignored compared with that of non-smooth patches;

In addition, the results about the effects of the proportion of significant patches on

the computational cost reduction is presented in Fig. 6.15,where a linear relationship

is established. A larger proportion of significant patches means higher cost and less

computational cost reduction. So, it is critical to adjust the proportion of the significant

patches to meet the requirement of reducing the computational complexity.

6.3.8 Effectiveness of PC feature in complexity reduction

To demonstrate the effectiveness of using PC feature in reducing the complexity in

MDSR, we choose the gradient feature and random selection method for comparison.
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(b) less-significant patches
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Figure 6.14: The influence off on the number of significant patches, less-significant
patches and smooth patches.
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Figure 6.15: The proportion of significant patches vs. the computational cost reduction

In the experiment, the gradient operator is defined as

dx=
1
16



3 0 −3

10 0 −10

3 0 −3



(6.12)
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dy =
1
16



3 10 3

0 0 0

−3 −10 −3



(6.13)

The input LR imageY is convolved by (6.12) and (6.13), respectively. Thus, two

components of gradient mapG1 andG2 are obtained. The gradient mapG is calculated

by

G(y) =
√

G1(y)2 +G2(y)2 (6.14)

whereG(y) denotes the value of pixely ∈ Y in gradient map. ThenG is binarized

according to the adaptive threshold in (5.11), which works in the same way to separate

all the patches into important ones and unimportant ones as PCPE-MDSISR.

For random selection method, we select a certain number of pixels as active pixels

in LR image randomly. These chosen pixels are set as 1 and the other pixels are

0, which constitute of the random selection map. So the corresponding significant

patches can be determined in the same way as PCPE-MDSISR.

Both the robustness and the reconstruction quality of the three compared methods

are considered. We randomly choose the same number of pixelsout of the active pixels

in PC map, gradient map and random selection map to let these pixels take upc% of

the total number of pixels, respectively. For fairness, thebinary PC map, gradient map

and random selection map are obtained whenf = 25 andt = −20. The experiment is

repeated 50 times for eachcand the boxplot for PSNR, SSIM, MSSIM and FSIM of the

three methods are shown in Fig. 6.16, wherec is equal to 30, 40 and 50, respectively.

In Fig. 6.16, the results of PC, gradient and random selectionare listed from left

to right for eachc. It is noticed that PC feature is able to provide higher accuracy and

better robustness compared with gradient feature and random selection. The binary

PC map, gradient map and random selection map are presented in Fig. 6.17, where

30% of the pixels are selected as significant pixels. The significant pixels in PC map

distributed more-concentrated on the informative structures of image than those in

gradient map and random selection map, which is helpful for the patch evaluation in

PCPE-MDSISR. Although the gradient feature is able to extractthe edges efficiently,
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Figure 6.16: Comparison of PC, gradient and random selection in complexity reduc-
tion: image of girl. For eachc, left: PC, middle: gradient and right: random selection.

it ignores some objectives which have weak contrast with thebackground. For the

random selection map, the structures can not be recognized at all.

6.4 Conclusion

In this paper, we proposed a PC based patch evaluator (PCPE) toreduce the compu-

tational complexity in conventional MDSISR. PC feature of LRimages are extracted

and utilized. PCPE-MDSISR combines the advantages of multiple dictionaries, global

dictionaries and bicubic interpolation. Firstly, the significant patch can be recovered

precisely by multiple dictionaries; Secondly, applying the global dictionary can avoid

causing the over-smoothness in less-significant and achieve faster reconstruction; Last

but not least, BI performs fast and effectively in recovering the smooth region. We em-

ploy Zeyde’s method as a baseline approach for MDSISR. Experimental studies sug-

gest that PCPE-MDSISR not only outperforms some state-of-the-art SISR methods,

but also greatly reduce the computational complexity in thereconstruction process of
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(a) PC (b) Gradient (c) Random selection

(d) PC (e) Gradient (f) Random selection

Figure 6.17: Comparison of binary PC map, gradient map and random selection map

conventional MDSISR. In this study, although only one typical MDSISR is investi-

gated, our proposed patch evaluation method can be incorporated into other MDSISR

frameworks to reduce the computational cost brought by multiple dictionaries in re-

construction process.

6.5 Proof of Theorem 1

If Bm < B0
m, then

m1F2b2(K + 1)L +m2F2b2L + B×(F2 − 1)MN

F2MN
<

Ntotalb2(K + 1)L
MN

m1b2(k+ 1)L
MN

+
m2b2L
MN

+
(F2 − 1)B×

F2
<

(m1 +m2 +m3)b2(k+ 1)L
MN

m2b2L
MN

+
(F2 − 1)B×

F2
<

(m2)b2(k+ 1)L
MN

+
(m3)b2(k+ 1)L

MN

(F2 − 1)B×
F2

<
(Km2 + (K + 1)m3)b2L

MN

(6.15)
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since (F2−1)B×
F2 < B×, to satisfy the inequality stated above, then

B× <
(Km2 + (K + 1)m3) b2L

MN
MNB×

b2L
< Km2 + (K + 1)m3

(6.16)

As the patches are divided with overlap,MN
b2 < Ntotal. So,

MNB×
b2L

<
NtotalB×

L
< Km2 + (K + 1)m3

m2 +
K + 1

K
m3 >

NtotalB×
L

m2 +
K + 1

K
m3 > m2 +m3 >

NtotalB×
KL

m2 +m3

Ntotal
>

B×
KL

(6.17)

whereB× = 70.

Similarly, we can prove that ifm2+m3
Ntotal

> B+
(K−1)L , Bp < B0

p, whereB+ = 45.
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Chapter 7

Conclusions and Future Works

7.1 Conclusions

This thesis mainly focus on variants of modeling and optimization in CS reconstruc-

tion. Furthermore, it also investigates the sparse coding model and its applications in

image superresolution reconstruction.

First, we formulate DL based BCS as a bi-level optimization problem in which

the upper level is to approximate the reconstructed sub-block by minimizing the CS

measurement discrepancy and the lower level is to optimize the sparse coefficients

represented by locally learned dictionary by minimizing the sparsity of the image sub-

block. The perceptual nonlocal similarity (PNLS) is proposed as the constraint for the

upper-level optimization, which can reduce the block artifact among the sub-blocks.

We apply a combination ofl1 andl2 norm minimization method to slove this formulated

problem. Experimental results demonstrate that the proposed method is effective and

achieves higher performance on numerical and visual results than some state-of-the-art

single-level optimization methods in BCS.

Second, we formulate the CS based sparse signal reconstruction as a problem of

locating the nonzero entries of the signal. In order to reduce the impact of noise and

better locate the nonzero entries, we proposed a two-phase algorithm which works

in a coarse-to-refine manner. Experimental results on benchmark signals as well as

randomly-generated signals demonstrate that our proposedmethod outperforms the

above methods, achieving higher recover precision and maintaining smaller sparsity.
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Third, we propose an adaptive sparsity estimation model forimage patches, which

consists of an offline training phase and online estimation phase. In offline training,

MOEA/D is applied to obtain a group of Pareto solutions and determine a sparsity

range for the training patch. In the online estimation phase, for a query patch, its

sparsity range is set to that of the most similar training patch. And the corresponding

sparse representation vector can be obtained by a sparsity-restricted greedy algorithm

(SRGA) constrained by this range. Experimental studies on benchmark dataset demon-

strate that our proposed approach is able to achieve better sparse representation quality

in terms of PSNR and coding efficiency.

In chapter 5, we proposed a complexity reduction method in multi-dictionary based

SR via phase PC. The PC map of LR image is extracted and binarized to distinguish

the importance of the image patches. Then the important patches are reconstructed by

multi-dictionary based SR method and the unimportant patches by single-dictionary

based SR. The final reconstructed result is obtained by averaging the overlapped region

between the adjacent patches. Experimental studies demonstrate that the proposed

method can not only achieve competitive results compared with multi-dictionary based

SR method, but also save much time and reduce the computational complexity in the

reconstruction process.

Finally, we proposed a PC based patch evaluator (PCPE) to reduce the computa-

tional complexity in conventional MDSISR. PCPE-MDSISR combines the advantages

of multiple dictionaries, global dictionaries and bicubicinterpolation. Firstly, the sig-

nificant patch can be recovered precisely by multiple dictionaries; Secondly, applying

the global dictionary can avoid causing the over-smoothness in less-significant and

achieve faster reconstruction; Last but not least, BI performs fast and effectively in

recovering the smooth region. Experimental studies suggest that PCPE-MDSISR not

only outperforms some state-of-the-art SISR methods, but also greatly reduce the com-

putational complexity in the reconstruction process.
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7.2 Future Works

There are still several issues that need to be addressed for modeling and optimization

in CS reconstruction and sparse coding. The following working directions to further

improve the current proposals are listed as follows:

• For the BCS reconstruction, although the bilevel formulationof BCS is reason-

able, the implementation of the algorithm is also very critical. future research is

to focus on how to design an effective and efficient algorithm to solve the bilevel

problem.

• For the sparse signal reconstruction, the supervised learning approach which is

more powerful to classify the nonzero entries can be taken into consideration.

• For sparsity estimation, although MOEAs can achieve competitive results com-

pared with the conventional greedy algorithm empirically,our proposed method

for sparsity estimation is also largely dependent on the parameter setting. It is

essential to select and determine the relevant parameters adaptively or in a more

intelligent way. More importantly, it is another issue to theoretically prove the

effectiveness of this approach, which is the target of the future work.
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