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Abstract

In the past decade, the emerging techniques of compressigng (CS) and sparse
coding (SC) have been widely applied in the fields of signatessing, wireless com-
munication and medical imaging. The core of these apptoatis to develop an ef-
ficient recover algorithm and a compact sparse representi signals. The quality
of the recovered or sparsely represented signal can be neelasyi several key crite-
ria, including the measurement error (ME), reconstrucdionr or representation error
(RE) and the sparsity. Various regularization based methoglproposed to enhance
the capability of sparse representation and more probjssoHsc recover algorithms
are developed to solve the ill-posed CS recover problem. Mervmost of these meth-
ods focus on the optimization of the well-posed problem gnore the exploration and
modeling of the relationship among these key criteria.

It is expected that modeling is helpful to provide more ihsigl views about the
problem, which tries to interpret the problem fronffdrent angles. So, in this thesis,
we focus on both the modeling and optimization of CS and SC ih dignal and
image reconstruction problem. In addition, one typical SSda application, single
image superresolution (SISR) is investigated. Experime@rtalts demonstrate that
through appropriate modeling and optimization, the qualithe reconstructed signals
is superior to that of the conventional optimization methay testing both on the
benchmark and real-world database. In particular, we wélspnt five aspects of works
in this thesis.

At first, dictionary learning (DL) based block compressiensing (BCS) image
reconstruction, which aims to obtain both good sparse sepitation and reconstructed
image with high accuracy, is investigated. It is found tihat tecovered sub-block and

the sparse cdicients are no longer simply bridged by linear function, esgly when



independent measurement noise exists. In addition, therrtagk in BCS focuses on
optimizing the recovered sub-block. To accurately addtkssintrinsically mutual
influences between the two tasks and stress the importanoajof task, DL based
BCS is formulated as a bi-level optimization problem in whibk tpper level is to
approximate the reconstructed sub-block by minimizing @& measurement error
(ME) and the lower level is to optimize the sparseftoents represented by locally
learned dictionary by minimizing the sparsity of the imagé-block. Experimental
results demonstrate that the proposed bi-level modelingogmimization method is
effective and achieves higher performance on numerical angMmssults than some
state-of-the-art single-level optimization BCS recoverhods.

Secondly, we investigate the 1-D CS signal reconstructiaeuthe noisy environ-
ment, which can be regarded as a problem of locating the noergries of the signal.
In order to reduce the impact of the measurement noise ater batate the nonzero
entries, we proposed a two-phase algorithm which works mease-to-refine manner.
The tradef between the ME and the sparsity is utilized, so in phase Igaxdposition
based multi-objective evolutionary algorithm, MOHA is applied to generate a group
of robust solutions. To remove the interruption of noise, skatistical features with
respect to each entry among these solutions are extractieahanitial set of nonzero
entries are determined by clustering technique. In phaad@ward-based selection
method is proposed to further update this set and locatedheeno entries more pre-
cisely based on these features. At last, the magnitudesotttonstructed signal are
obtained by the method of least squares. Experimentaltsesalbenchmark signals
as well as randomly-generated signals demonstrate thgiroppsed method outper-
forms several state-of-the-art CS recover methods, actgevigher recover accuracy
and maintaining smaller sparsity.

In addition, we consider the problem of estimating the spafer image with
noise. We propose an adaptive sparsity estimation modehadunsists of anftline
training phase and online estimation phase. In tiine training, for each training
patch, MOEAD is applied to obtain a group of Pareto solutions and detezraispar-

sity range by formulating SC as a multiobjective problem. Bygessing a reduced



number of representative training patches, all the syaraitges are stored in a look-
up table (LUT) for reuse. In the online estimation phaseafquery patch, its sparsity
range is set to that of the most similar training patch. Areddbrresponding sparse rep-
resentation vector can be obtained by a sparsity-resdrigteedy algorithm (SRGA)
constrained by this range. Thus, the sparsity is adaptitetgrmined by this sparse
representation vector within this range. By comparing whih $tate-of-the-art greedy
algorithms with fixed sparsity, experimental studies ondhemark dataset demonstrate
the dficacy of our proposed method.

Also, as one of the most representative application of S@Jeimage superres-
olution (SISR) is researched. In this work, we focus on usingtiple dictionaries
to sparsely represent the pair of low resolution and higbluti®n patches, namely
multi-dictionary based SISR (MDSISR). As the computatiauast of MDSISR is very
heavy and usually time-consuming and resource-intengigggroposed a complexity
reduction method via the phase congruency (PC) map, baselioh tle available LR
image patches are divided into important patches and uniaipigpatches. Then, the
corresponding important HR patches are reconstructed liyphewictionary method
and the unimportant ones by single dictionary. The finalizbnstructed HR image
is obtained by averaging the overlapped region betweendjaeent patches. Experi-
mental results show that the proposed method can not onyrobbmpetitive results
but also can reduce the computational complexity in thensitaction process com-
pared with conventional MDSISR.

Last but not the least, for MDSISR, we propose a patch basaddaggato classify
the LR patches into three categories: significant, lessHgignt and smooth based on
the complexity of the contents. By incorporating the PC bametch evaluator (PCPE),
a flexible MDSISR framework is proposed, which further rezkithe computational
cost in the reconstruction process. In this framework, pleltdictionaries are only
applied to scale up the significant patches to maintain héglomstruction accuracy.
Also, two simpler baseline approaches are used to recanstrel less-significant and
smooth patches, respectively. Experimental studies onhmeark database demon-
strate that the proposed method can achieve competitivé&RPSSIM, and FSIM with

some state-of-the-art SISR approaches. Besides, it canedke computational cost



in conventional MDSISR significantly without much degradatin visual and numer-

ical results.
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Chapter 1

Introduction

1.1 Backgrounds and Overview

As an advanced signal acquisition and reconstruction fnare compressed sens-
ing (CS) (or compressive sensing) has been widely applie@imws fields such as
imaging sciences, signal processing, image processimgpater vision and time se-
ries analysis. The advantages of CS over the traditionabbigansmission are: 1) it
allows lower sampling rate for accurate reconstructionchareakthroughs the limi-
tation of Nyquist sampling theorem. 2) Opposite to the cadeaditional acquisition
system, it provides more reasonable computing resourloestibn, where naive linear
arithmetic encoding is simply performed together with skngpduring the transmis-
sion and éicient algorithms which need a lot of computingjogts are executed in the

reconstruction process, shown in figure 1.

~— . Simple Decoding Procedure
) Complex encoding method
NN . NN
VAVES Transmission IRV AVAN
——»  Nyquist Sampling ———» Encoding > Decoding >
. Simple linear encoding Efficient reconstruction
1) with sampling with heavy computation
NN
VAN s " d Transmission NN~
. VA,
Samping an » Reconstruction method ————»
encoding

Figure 1.1: Comparison of signal acquisition and reconstndetween traditional
framework and CS



1.1. BACKGROUNDS AND OVERVIEW 2

Without loss of generality, CS recover is regarded as exaetignstructing a sparse
or compressive signad € RN from a small number of its highly incomplete linear
measurementg € RM.

y=AX+n (1.1)

whereA € R™N (M < N) is the sensing matrix anal € RV represents the additive
independent identically distributed (i.i.d) noise. It isserved that this is an under-
determined linear system and to solve this ill-posed proble is desirable to add
some constraints for (1.1). Under the assumption that ngpsts exhibit their sparsity
either in space domain or under other support basis, CS retakes the sparsity of
signals into consideration. Thus, the recoveryxafan be obtained by solving the

following optimization problem.
min|xllo st. [ly - Ax|5 < o (1.2)
X
or
min|ly — Ax|3 st. [Xllo <7 (1.3)
X

where the positiver is the measurement error tolerance andenotes the sparsity
constraint.
The accurate and robust reconstruction can be guaranteled Restricted Isome-

try Property (RIP) condition [1], which is described as folk
(1-6)IIXIE < IAXIES < (1 + 6k)IIXII3 (1.4)

whereK denotes the sparsity afanddy is the RIP constant, €@ 6 < 1.
To satisfy the RIP condition stated above, the sensing mattidd be drawn from
certain distributions, e.g. the random normal distributa a symmetric Bernoulli

distribution, with the inequality in (1.5).
M > C - K log(N/K) (1.5)

The problems in (1.2) and (1.3) are NP-hard anfiidilt to solve. Traditional



1.1. BACKGROUNDS AND OVERVIEW 3

methods include the relaxation methods, the heuristic oausthsuch as greedy algo-
rithms. Relaxation methods convert the nonconvex optingaab convex optimiza-
tion under certain condition$, norm is commonly used to replagenorm, which can
be solved by applying Basis Pursuit (BP), Basis Pursuit Demgpi@PDN), LASSO
and its variants. In [2] [3], minimizing th norm achieves rather competitive results
compared with the existinig norm relaxation methods. In addition, it is reported in [4]
and [5] that a good reconstruction can also be obtained Imgwirivable approxima-
tion functions instead o, norm, which implicitly denotes the sparsity. The recon-
structed sparse signal can be easily solved by applyinghklaohin-Tucker (KKT)
condition. Heuristic methods, such as the greedy algostiwork in an iterative way
that at each iteration, the component with the largest tairo@ with the current re-
construction residual is picked out as the nonzero entrg dlgorithm will stop until
the reconstruction error threshold or the number of iteretis reached. The represen-
tatives of greedy algorithms solving the CS recover problectude Matching Pursuit
(MP) [6], Orthogonal Matching Pursuit (OMP) [7] and theiriaats [8] [9]. Although
these two categories of methods mentioned above can olstiEsfastory reconstruc-
tion results, there is a bottleneck that both of them havemroon. It is noted that the
relaxation methods mainly focus on modeling the sparsityeithe greedy algorithms
aim to utilize the measurement error (ME). In other wordghhbad them fail to take
the relationship between these two components into coradide.

CS reconstruction is often regarded as solving an optinoagiroblem, however,
it is also worth to note that modeling the problem is equintljeimportant. In general,
modeling is the base of optimization, which reflects the meration and interpreta-
tion about the underlying property and characteristicheftroblem. Some pioneering
works have addressed on reformulating the CS reconstruptmsiem by exploring
the relationship betweenftierent criteria, which outperform the traditional methods
significantly. In [10], jointly optimizing the ME and spatgicould significantly im-
prove the reconstruction quality under the noisy envirommBuring the optimization
process, these two components are updated alternativéltharmethod is proved to
converge to a stable and robust solution. This method ibdugxtended and applied

in the application of electrical impedance tomography (HIT], which achieves the
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state-of-the-art performance. In [12], the trafidmetween the ME and sparsity (in
terms ofl; norm) is explored so that sparse reconstruction problemodeted as a
multiobjective optimization problem (MOP). By using the noibjective evolutionary
algorithm (MOEA) to solve the MOP, the reconstructed sigaalbtained with high
accuracy. In [13], MOEA is applied in solving the large-gcaparse reconstruction
problems where minimizing the ME and sparsity (in termis%dhorm) is modeled as
a MOP. Experimental results show that it outperforms thepmamed single objective
optimization methods.
We usex* andx to denote the reconstructed signal and original signgbeesvely.

The inequality in (1.4) can be rewritten as:
(1= 62k)lIX = X115 < [ly = AX[I5 < (1 + Sa)lIX = X713 (1.6)

where thes,x denotes the RIP constant with the sparsity equalko & is noticed

that this inequality connect the ME and reconstructionrefiRE), [x — x*||5 and the

sparsity. Thus, to obtain the good quality reconstructiois, desirable to well model
the relationship among these criteria.

In this thesis, we mainly aim to model the relationship amthvegcriteria in CS re-
construction so that high quality reconstructed signallmaachieved. In other words,
we try to investigate the CS reconstruction fronffelient aspects by testing on the
imagery signal and 1D sparse signal.

Sparsity is an important criteria in CS, which has great impacthe reconstruc-
tion quality. Since not all the signals are sparse in the esgimenain, they should be
sparsely represented under certain basis. Compared with rfegresentation basis,
such as DCT and wavelet, dictionary learning based sparsegcodn provide more
compact and adaptive sparse representation. Recently,rsmekDL algorithms have
been developed for flerent applications. In [14], a discriminative sparse cgdor
visual data with multiview features, which integrates thesblan regularization, was
proposed to deal with image annotation problem. In [15],sh&ii discrimination cri-
terion based DL method was proposed for pattern classditatvhich considers both

the reconstruction error and sparsefticeents as the discriminative features. In [16],
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a two-stage DL algorithm for a coupled pair of low and highotagon dictionaries
was developed in image superresolution. Both the geomkstitectures and nonlocal
similarity were taken into consideration to enhance thenieg performance. In [17],
incremental learning framework was adopted to obtain asgpapresentation-based
classifier for image segmentation, which shows its supéyitw traditional learning
methods in diterent categories of images. However, there is little woidrasising on
estimation of the sparsity for the image patches under rexsyronment. So, in this
thesis, we also aim to develop a more robust sparsity estimatethod by appropri-
ately modeling the SC problem.

In addition to the sparsity estimation, the sparse codiogrigjue has been applied
in a variety of multimedia-related applications, amongalhimage superresolution is
the most typical representative. Image super-resolutaaditracted extensive atten-
tion from the researchers and practitioners in image peicgsarea. To reduce the
computational complexity, one fast single super-resofuéipproach, anchored neigh-
borhood regression (ANR) [18] was proposed, where spars@mcies and regres-
sors were learned to be anchored to the atoms. In [19], arowagrversion of the
method in [18] was developed, which combined the advantafy@schored neighbor-
hood regression and simple functions. Experimental resléimonstrated it achieved
the state-of-the-art performances both in quality afidiency. Other sparse represen-
tation based methods included 2D sparse representatipngjérse support regres-
sion [21] and local rank representation [22]. Recently,etsgs of machine learning
techniques were also applied in image super-resolutiooh®ae competitive results,
such as extreme learning [23] and deep learning [24]. Intaaigithe éhiciency could
be improved by using GPU acceleration [25] and simple mapfiinctions [26]. Al-
though sparse coding based image superresolution haveAstlenvestigated, there
is still room for improvement. Considering both thieetiveness andficiency, it is
also desirable to develop a novel superresolution metheddan the sparse coding
technique. Thus, in this thesis, the typical applicatiosmdrse coding, single image
superresolution (SISR), is investigated, which aims to ouprboth the flicacy and

the dficiency of the existing approaches.
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1.2 Thesis Objectives and Structure

This thesis aims to achieve better reconstruction qualtyptoperly modeling and
optimizing the CS recover problem. In addition, the highliated technique, sparse
coding and its applications, are also investigated. Spedlfi we have the following
objectives and the graphical illustration for the objeesivand their relationships are

presented in 1.2.

e To figure out the CS recover problem in the noisy environmemd, dscover
new modeling and optimization method to improve the recoiesbn quality

and maintain the sparsity. Our considerations include:

— The block CS reconstruction model, which is widely-used armhsing

in imaging system.

— The sparse signal reconstruction approach from noisy mesasunts.

e To estimate the sparsity that can serve for the CS reconistnuahd investi-
gate the applications of sparse coding in image recongtrucOur considered

directions include:

— Sparsity estimation for image patches
— Multi-dictionary sparse coding based single-image s@saiution

— A generalized single-image superesolution reconstrmgtiodel

The main structure of this thesis is organized as follows. pB#ra2 ~ chapter 3
focus on the dferent modeling and optimization methods in CS reconstractio
chapter 2, we formulate the block CS as a bi-level optimirgpimblem which aims to
optimize the sparse representation and the reconstrudisorepancy in an interactive
way. In chapter 3, we figure out that CS based sparse signahstaotion can be
modeled as a problem of locating the nonzero entries andopeop two-phase evo-
lutionary approach to obtain a reconstructed signal witthér accuracy and better
sparsity. Chapter 4 chapter 6 focus on the modeling and optimization in SC and
its applications In chapter 4, we analyze the trdtibetween the sparsity and repre-

sentation power of SC and propose an adaptive sparsity astimmethod based on
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Figure 1.2: The thesis’ objectives and their relationships

multiobjective optimization. In chapter 5, as a classigglecation of SC, for multi-
dictionary based single-image superresolution, we preg@scomplexity reduction
method based on phase congruency. In chapter 6, the worlaptah5 is extended
where a more flexible single-image superresolution franmkvgraised based on the
proposed phase congruency patch evaluator. The commabhtomplexity is further
reduced significantly without much quality deterioratiimally, we make the conclu-

sion of this thesis and give the future research directions.

1.3 List of Contributions

From the modeling and optimization in CS reconstruction,ntan contributions are

listed as follows:

1. We formulate Dictionary learning (DL) based block congsiee sensing (BCS)
as a bi-level optimization problem in which the upper legah approximate the
reconstructed sub-block by minimizing the CS measurementejpancy and the
lower level is to optimize the sparse dbheients represented by locally learned
dictionary by minimizing the sparsity of the image sub-tllodhe perceptual
nonlocal similarity (PNLS) is proposed as the constraintt@ upper-level op-
timization, which can reduce the block artifact among the-Blocks. We apply

a combination of; andl, norm minimization method to slove this formulated
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problem. Experimental results demonstrate that the pexposethod is #ec-
tive and achieves higher performance on numerical and Misgalts than some

state-of-the-art single-level optimization methods in BCS.

2. We formulate the CS based sparse signal reconstructiopraklem of locating
the nonzero entries of the signal. In order to reduce the ainpfanoise and bet-
ter locate the nonzero entries, we proposed a two-phasgthlgavhich works
in a coarse-to-refine manner. In phase 1, a decompositiadlaslti-objective
evolutionary algorithm is applied to generate a group otisblsolutions by op-
timizing I, norm of the solutions. To remove the interruption of noike,gtatis-
tical features with respect to each entry among these sokiire extracted and
an initial set of nonzero entries are determined by clusggiechnique. In phase
2, a forward-based selection method is proposed to furtpdate this set and
locate the nonzero entries more precisely based on thesedsaExperimental
results on benchmark signals as well as randomly-genesajrdls demonstrate
that our proposed method outperforms the above method&vaw higher re-

cover precision and maintaining smaller sparsity.

From the modeling and optimization in SC and its applicajdhe main contribu-

tions are listed as follows:

1. We propose an adaptive sparsity estimation model forépadches, which con-
sists of an ffline training phase and online estimation phase fline training,
MOEA/D is applied to obtain a group of Pareto solutions and detegraispar-
sity range for the training patch. By processing a reducedoauof representa-
tive training patches, all the sparsity ranges are storedaok-up table (LUT)
for reuse. In the online estimation phase, for a query patstsparsity range
is set to that of the most similar training patch. And the esponding sparse
representation vector can be obtained by a sparsityct=irgreedy algorithm
(SRGA) constrained by this range. Experimental studies ochraark dataset
demonstrate that our proposed approach is able to achi¢tex bparse repre-

sentation quality in terms of PSNR and codirficency.

2. For multi-dictionary sparse coding (SC) based singlegertzased super-resolution
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(SISR), we proposed a complexity reduction method based asgatongruency
(PC). The PC map of the LR image is extracted and binarized &sure the im-

portance of the image patches. The important HR patcheseoastructed by
multi-dictionary based SC and the unimportant ones by shdgitionary based
SC. The finalized reconstructed HR image is obtained by awegage over-

lapped region between the adjacent patches. Experimesialts show that our
method can not only obtain competitive results but also ear smwuch time and
reduce the computational complexity in the reconstrucpomcess compared

with multi-dictionary sparse coding based SR method.

3. Aflexible multi-dictionary based SISR (MDSISR) framewdslproposed, which
reconstructs dierent patches by fierent approaches. A phase congruency (PC)
based patch evaluator (PCPE) is proposed to divide the LRh@atato three
categories: significant, less-significant and smooth basgeitie complexity of
the contents. In this framework, multiple dictionaries@amnéy applied to scale up
the significant patches to maintain high reconstructiomezy. Also, two sim-
pler baseline approaches are used to reconstruct thei¢ggsSeant and smooth
patches, respectively. Experimental studies on benchdwdbase demonstrate
that the proposed method can achieve competitive PSNR, SSId/ESIM with
some state-of-the-art SISR approaches. Besides, it cane¢iae computational
cost in conventional MDSISR significantly without much dsdgition in visual

and numerical results.



10

Chapter 2

Bilevel Optimization of Block
Compressive Sensing with

Perceptually Nonlocal Similarity

2.1 Introduction

Image reconstruction from measurements applying comigeesensing (CS) [27] has
attracted intensive interests from researchers. CS sagngpleory breaks the limita-
tion for the requirement of the lowest sampling rate in tiiadal Nyquist sampling to
guarantee the accurate reconstruction, which has showenfpdtadvantages in target
detection [28] [29] and signal recover [30]. It is stated in tb&t a sparse signal or
compressive one can be exactly reconstructed from a snmabeuof its highly incom-
plete linear measurements as long as the Restricted IsoRreperty (RIP) condition
is satisfied [1]. Compared with frame-based CS method, bloakpcessive sensing
(BCS) can significantly reduce the computational cost in theg@reconstruction. The
concept of BCS is firstly raised and developed in the literafdi¢ where the image
is divided into several non-overlapped image sub-blocks tie same size and all
the sub-blocks are measured by the same sensing matrix emastaicted block by
block. BCS introduces a conceptual framework which is moretflexand feasible for
paralleling implementation and better memory storage.

In BCS, sparse representation of the image sub-block is ¢racithe quality of
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the reconstructed image. Other than exploring the tramstmdficients by the fixed
transform basis, such as DCT, wavelet and curvelet transftintionary learning (DL)
based sparse representation has received great attansigmal processing in the past
decade. The advantage of learned dictionary over the spéefisform basis lies in
the fact that DL provides an adaptive sparse transform bgimg from a group of
pre-collecting image instances.

The use of DL in BCS reconstruction aims to obtain both goodsgpeepresenta-
tion and reconstructed image with minimized CS measurenisatepancy. In [32],
after the initial reconstruction from CS measurements, ittgotary and the sparse co-
efficients of all the sub-blocks are updated simultaneouslyerAhe post-processing
by averaging the overlapped portion of the adjacent subkislahe finalized image is
obtained in an iterative way. In [33], an adaptive dictignkrarned from the recon-
structed image itself is introduced to automatically apprate the sparse cigients.
The sparse representation and the recovered image subdi®dintegrated into one
optimization problem which is separated into three sullblemms solved sequentially.
In the literature, these methods mainly optimize the meamant discrepancy with
constrained sparsity, or optimize the sparsdiodents and dictionary under the mea-
surement constraint.

In [12], it is indicated that when independent noise exists,reconstructed qual-
ity can not be improved but even degraded by only minimizimg €S measurement
error. Sometimes, it is obvious that a good estimation ofstherse ca@cients does
not imply the optimal of the reconstructed image as the erc# of noise may mis-
lead the underlying true sparsity. Therefore, the task bfldock recover and sparse
representation can not be simply bridged by the lineariogiahip,x = Da, where
x denotes an image sub-bloak, is the sparse cdicients and represents a dictio-
nary for sparse coding. To achieve a good reconstructedaniaig necessary to build
an explicit model for DL based BCS with measurement noise, visi@ble to better
describe the relationship between these two tasks.

In [12] [13], CS measurement error and sparsity are optimeiatlltaneously,

where the conflicts between the two objectives arise. Thenstouction task aims
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to minimize the measurement error while the sparse reptasam task has the ob-
jective of obtaining the sparsest representation. To siblgse two tasksfiectively,

it is formulated as a multi-objective optimization problern DL based BCS, it is
suggested that the major task is to obtain the reconstrstiedblock and the sparse
representation error should be confined in certain range iegpect to the recovered
sub-block. Considering the priority of subblock recoverpgarse representation, a hi-
erarchical relationship containing a leader and a followger be established for these
two tasks. This scenario may be modeled as a bilevel opttraizproblem consisting
of the upper-level subproblem and the lower-level subgnob]34] [35]. The upper
level (leader) is to minimize the CS measurement discrepahttye reconstructed im-
age sub-block. And the lower level (follower) is to optimites sparse cdicients
represented by the local learned dictionary. The basicyplie of bilevel optimiza-
tion is that bilevel optimization has a hierarchical stuwet in which the leader aims
to solve the upper-level problem and the followers focusawver-level optimization.
The leader and the follower have their respective objestarel the leader tries to in-
fluence the actions of the follower, which inspires the fwko to optimize the leader’s
objective.

Bilevel optimization has been applied in some applicatiamshsas signal pro-
cessing [36], transportation network [37], environmeetadineering [38] and market-
ing [39]. Sometimes, the objectives of upper level and loleeel are conflicting. To
deal with this problem, it is necessary to relax the objestior the constraints to cer-
tain tolerance to get the near-optimal solutions. In [4i0&, Ibest compromise solution
that satisfies both the upper level and lower level optinorais obtained. The strat-
egy in solving this problem is described as: the upper Iel@lva certain tolerance for
its objective and the lower level optimizes its objectiveentthe tolerances are met.
Then, the follower in the lower level gives his solution te tieader and the leader
responses to update its objective if the original tolerarer@ not guaranteed. This
process is operated in an iterative way until the final sofuts satisfied by both the
upper and lower level optimization. These ideas of intéraaghethods, which search
in the balanced space between the two levels, have beerdpkolving the bilevel

optimization problem stated in [41] [42].
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For the bilevel optimization of BCS in our paper, some techesyare involved
in the reconstruction to make it more comprehensive androbita image with high
visual quality. In the upper level of our bi-level problenperceptually nonlocal simi-
larity (PNLS) constraint is introduced to reduce the blodKact between the adjacent
image sub-blocks which helps to improve the image qualitperteption and more
importantly, it provides some error tolerance for optimgithe objectives of upper
level and the reconstructed sub-block. In the lower levéhagation, local dictionar-
ies trained from pre-defined number of image instancesearsisire assigned to each
sub-block according to the Euclidean distances betweedltiséer center and the im-
age sub-block to be reconstructed in measurement space.dgeanwith training the
same number of dictionaries as the sub-blocks, it is moretiped to apply the local
dictionary based on clustered samples, since it largelgsséve computational cost
in the training process. The hierarchical decision refefop is illustrated in Figure
2.1, where the upper level includes reconstructing thetdabk by minimizing the CS
measurement discrepancy and the lower-level decision maakes to optimize sparse
codficients by minimizing the sparsity under the constraint airsp representation

error in measurements Space.

Estimated sparse
coefficients

Reconstructed
sub-block

Figure 2.1: Hierarchical structure of the decision makeBCS
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It is desirable to developfiécient bilevel optimization techniques to solve the real-
world applications. Since the conflicts between the two cjes have been investi-
gated, in this paper, the interactive method which is regrhas the combination of
andl, norm minimization is proposed to find the optimal solutidme(balanced solu-
tion between two levels) of the bilevel problem. The aldorntconsists of two steps.
At the first step, the initial reconstruction is obtained lsshogonal matching pursuit
(OMP) [7] with the locally learned dictionaries. In the sadcstep, the reconstructed
sub-block and sparse diieients are updated alternatively Byandl; norm minimiza-
tion to find the optimal solution that fit for the objectiveshaith levels. Experimental
simulations are conducted on images from benchmark daasethe results demon-
strate that the proposed method outperforms some stdte-afrt BCS methods both
in visual quality and numerical metrics. In summary, thetdbations of this paper

are three folds and listed as follows:

e DL based BCS with measurement noise is formulated as a bil@@ehization
problem which is able to explicitly describe the hierarethielationship between

sub-block recover and sparse representation.

e A perceptually nonlocal similarity (PNLS) constraint isrimduced to reduce the
block artifact between the adjacent image sub-blocks arpidwe the image

quality of visual perception.

e A combination ofi; andl, minimization method is proposed to solve the bilevel
problem dficiently, resulting in a better performance than some sigtbee-art

single-level BCS reconstruction methods.

The remainder of this chapter is organized as follows. 8e@i2 introduce the
basic framework of DL based BCS. In Section 2.3, the bileveinoigation of DL
based BCS is presented. The numerical and visual results ahimank images are
shown in Section 2.4. Finally, the conclusion is made andré&utvork is directed in

Section 2.5.
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2.2 Block compressive sensing and dictionary learning

2.2.1 Block compressive sensing

Block compressive sensing (BCS) [31] introduced finaive way for reducing com-
putational complexity in image reconstruction. The whatageX is divided into a
certain number of non-overlapped image sub-blocks witl Bix B and all the sub-

blocks share the same sampling matbix. Letx; denote theth vectorized sub-block.
yi = ®pXi + N (2.1)

where®y € R"=*8* andn; is the independent noise. In BCS, for simplicity of parallel
or distributed computation, the measurement madrixan be described as a block

diagonal matrix.

g O 0
0 &z - O

P = (2.2)
0 0 &g

Due to the existence of flierences between the sub-blocks,the local dictionary
trained for theith sub-blockx; is defined ad; € RE>e, i = 1...n, with B? < Lg,
wheren denotes the total number of sub-blocks in imagex; = Dj«a;, whereq;
denotes the sparse dheient vector ofx; sparsely represented . Therefore, the

dictionary for the whole image is represented as a blockaiagmatrix.

D, O 0
0 D, --- O

D= (2.3)
0 0 D,

By considering the sparsity constraint of sub-blogkthe sparse cdicientsq;
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should be solved from the objective function in (2.4).

" 1
a; = arg mmé”)’i — ®gDiall3 + pllexillo (2.4)

«

whereu is a Lagrangian Multiplier andl - || denoted, norm of the objective. It is
noticed that the problem described in (2.4) is NP-hard aedtimal is often obtained

by solving the equivalent problem as follows.

. 1
& = arg min|ly, — PeDieull; + eyl (2.5)

where]|| - ||; denoted; norm. As long asy; is determined, the reconstructed sub-
block can be obtained by = D;&;. In (2.4) and (2.5), the single-level optimization
of BCS is presented. To solve the problem in (2.5), varigusinimization methods
can be applied such as LASSO [43] and its variant [44]. Greddgrithms such as
orthogonal matching pursuit (OMP) [7] and its variants tagaed OMP [45], stage-
wise OMP [8] are also fécient for solving this problem. After all the sub-blocks
are reconstructed, the sub-block aggregation procedunbioes all the reconstructed

sub-blocks together to form the entire imagén (2.6).

n

o Ay N T
(X.&) = arg;pld; SIR(Y) = @eR (X)15
+ > ulagll).i=1.....n (2.6)
i=1

where X is composed of; with ith column equal tax;,Y consists of the vectors
yi,i = 1,...,n column by column andR(-) denotes the operator which extracts the
ith column of the matrix. There are some issues to be discussbeé later subsec-
tions. For example, how to select the training samples tgtcoct the training set and

the algorithm to train local dictionaries forftBrent sub-blocks.

2.2.2 Local dictionary trained from clustered image patches

In (2.5), it is too complicated to train a local dictionddy for each sub-block;. In

BCS, image sub-blocks with filerent characteristics own ftkrent sparsities. It is
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trivial that similar sub-blocks share the similar spaesiti To distinguish the image
sub-blocks with diterent characteristics, clustering is commonly applied sindlar
sub-blocks are grouped in each cluster. Learning a locéibdigry from a cluster of
similar image samples has been proven to tieient in image denoising [46] and
image superresolution reconstruction [47]. However, & hat been widely applied
in CS. In this paper, at firsK local dictionariesD;, j = 1...K are trained fronK
clusters of image samples, respectively. Then the Euclidéstancesl;, j = 1...K
between the sub-block andK cluster center€;, j = 1...K in measurement space
are calculated since the inpytis unknown but the measurement vectpis available.
Finally, the smallest distanak, k € {1, 2, ... K} is found and only one dictionaiyy is

assigned to reconstruct the sub-blogk

Input Measurements Output
S e S
N d, =min(d,,d,..d,), k € {1,2,..K}
x!
Sensing

Calculate distance
@ @l oo @)

A ,"\ Matrix
[ \ “ St B S Py
@ .. .. I D, — e e .
| B ! > K Dk
L A

N4
r Training <

Image Image Image _
Samples 1 | | Samples 2 Samples K Sub-samples
4‘ Clustering ‘

ML 0] ==

Figure 2.2: Procedure of selection of the local dictiormi@ined from clustered
patches

Flow diagram of this procedure is shown in fig 2.2, whéid , j = 1... K denotes
the cluster center in measurement space and are obtainéby= ®gC;. In image
samples, all the image patches are vectorized and shararniesze with the image
sub-block to be reconstructed. It is noticed that the padboitted line is implemented

offline and the local dictionaries are stored for the selectiodif®erent sub-blocks.



2.2. BLOCK COMPRESSIVE SENSING AND DICTIONARY LEARNING 18

Compared with training\ dictionaries forN sub-blocks (wheré\ is the total number
of sub-blocks), onlK dictionaries withN > K are obtained from the clustered image
sample which greatly reduce the computational compleritjictionary learning.

In addition, the learned dictionary from a particular grafgmage samples has
been proved to befkactive in many applications of image processing such asisleno
ing [46] and superresolution [47]. For BCS, there exist sigaiit diferences among
various image sub-blocks. For example, the sub-block wiriamly contains texture
pattern and the sub-block with smooth pattern should haterdnt dictionaries for
sparse representation. The local dictionaries designedifterent image sub-blocks
are able to capture the local features more precisely. Ij [d8al adaptively dictio-
nary for each sub-block is trained by collecting the sinslalp-blocks from the training
samples which is able to achieve better sparse represmmtiasin the global dictionary.
Some details of dictionary learning can refer to [48] [49hefe the most widely used
DL algorithm K-singular value decomposition (KSVD) is iatluced. The graphi-
cal visualization of how frequently each local dictionasyuised in reconstructing the

patches in each test image is shown in Fig. 2.3.

D5 (2%) D1(5%)

D5 (10%)
D1 (25%)

D1 (19%)

D4 (27%)

D4 (18%)

D2 (16%)
D2 (28%)

D3 (30%)

(@) (b) ()

D3 (25%)

Figure 2.3:K = 5 Test images (a) Lena (b) Barbara (c) Boats
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2.3 Bilevel optimization of dictionary learning based

BCS

In this section, bilevel optimization of dictionary leangibased BCS (BCS-DL-BLO)
is introduced. At first, bilevel formulation of this probleis presented which is fol-
lowed by the proposed PNLS in reconstruction process. Timendetails of the pro-

posed method are given.

2.3.1 Bilevel Formulation

In general, sparse representation based CS reconstrudtiome&asurement noise is

expressed as follows.

min|ly; — ®exill5 + A1IX;i — Dyexill3 + Aollexilly (2.7)

Xj, &

To solvex; anday, «; is firstly estimated ang; is updated givey;. «; is usually
estimated by the similar patches»@in training set, however, in CS; is not available
except the measurement To measure the similarity betwe&npand training patches
the Euclidean distance in measurement space is used as the. niderefore,q; is

obtained by solving the optimization problem:
rToljin llyi — ®gDyaxill5 + Aallcxilly (2.8)
By using the obtained;, x; can be updated by solving:
nliinll)’i — ®gXill3 + AallX — Dyaxill3 (2.9)

There are two disadvantages in this two-stage optimizgiroblem: Firstly, since
the existence of measurement noise, the sparse repreésemtaor (SRE) in measure-
ment space|PgX; — <I>BDkai||§ is not equivalent tdly; — <I>BDkai||§. Therefore, an
accurate sparse representatiompfs not reached, which influences the quality of the
reconstructec;. Secondly, although the stated shortcoming above can beawe

by alternative optimization approaches, the balance peter; and 1, are decided
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largely by the preference of the decision maker and the e¥edvsub-block with good
quality is not guaranteed. The weighted sum form of the eguamnly aims to find a
balance among the three objectives without consideringtiiogity of the tasks.

It is obvious that when the measurement noise exists, tlowveeed sub-block and
sparse co@cients are no longer bridged by the linear functign= Dyaj. So it is
necessary to build an explicit model which better indicdkesrelationship between
the task of sparse representation and sub-block recotistruc

Based on triangle inequality fog norm, the relationship amongftérent errors is

described as follows.
|®eXi — PeDiaill2 < |lyi — ®eDiaillz + |lyi — ®eXill2 (2.10)

In (2.10), the first term denotes the sparse representatron i@ measurement
space, the second term is the measurement error determynegih BCS and the
third one is the CS measurement error related;toUnder the noiseless condition,
the equal relationship is satisfied where all the three tearaqual to 0. However,
when the noise exists in the measurement space, we needdooeexpre from (2.10).
On one hand, if CS measurement error relatex] t8 minimized which is closely ap-
proaching to 0, (2.10) can be simplified|gBgX; — ®gDyr&ill> < |lyi — ®sD&ill. This
expression indicates that the solution which minimizessiherse representation error
in measurement space is guaranteed to reach the optimahithiatizes the measure-
ment error related tey;. In other words, minimizing the first term in (2.10) is better
than only solving the minimum of the second term. On the oflaexd, when the mea-
surement error with respect tg is €, ||®PgXi — PpDraill, < e+ |lyi — PeXillo. Itis
noticed that when small measurement error related,tg, is obtained, the relation-
ship keeps the sparse representation egratso accordingly small wherg < €5+ e
holds. These two properties lead to substitutiowith ®gX; in sparse representation

to make some relaxation to this task.

nli.n”ai”l st. || ®pXi — PeDiaill5 < € (2.11)
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In [12] and [13], it has been proved that, there is trdtiexationship between spar-
sity and the measurement error (ME). Therefore, BCS recarigirucan be treated as
a multi-objective optimization problem, in which these ttasks need to be solved

simultaneously.

min{ fy, f,}
2.12)
wheref = |lyi — ®gxill, f2 = [lally, St. || ®% — PeDyaill5 < €

Considering that the major task is to obtain the reconstdustd-blockx; in f;
and «; can be determined by the constraint relatec;toTherefore, there is a hier-
archical relationship between these two tasks. DL based B&8®&d&ormulated as a
bilevel optimization problem, in which the upper level (fleadar) is to optimize the
reconstructed sub-block and the lower-level (the follgveems to optimize the sparse
representation.

The nonlocal similarity constraint which has the denoigingperty is usually uti-
lized to make the reconstructed image more consistent. Caapeth the filtering
method, NLS can preserve the features and avoid over-smesghn some regions of
image. Since the pixels in the original image are not avhdlalve need to calculate
nonlocal similarity constraint based on the estimated|piXEhe estimated image can
be obtained byDy«; after ; is obtained. To improve the visual perception quality
of the reconstructed image, a perceptually nonlocal siityl@PNLS) operator is pro-
posed to obtain the nonlocal constraint. By incorporatingocal similarity constraint

into the problem in (2.12), the bilevel optimization pratlés expressed as follows.

- 2
min|ly; — ®exill;
|

st. Ix-vilB<e (2.13)

v; = PN LS(Dkai)

: 2
min - fleglls - Stl®exi — LeDraillz<e

wherev; denotes the nonlocal similarity constraint which is widebed in image pro-
cessing and PNLS is the proposed operation which extraeteidnlocal similarity

constraint for image sub-block.
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To simplify the problem in (2.13), we put one constraint ie thbjective function.

Thus, the bilevel problem in (2.13) is rewritten as

- 2 2
min|lyi — ®exillz + Allxi - vill
|

st. vi = PNLS(Dkaj) (2.14)

- 2
min laills  st.l[®PeXi — ®eDraill5<e
|

whereA is the weighting parameter.

The bilevel formulation not only considers the mutually urgihces between sparse
representation and sub-block recover, but also stresslitaining the recovered sub-
block is the major task in DL based BCS. In addition, the pexgapt nonlocal sim-
ilarity is introduced into the model which makes the pixelsrenconsistent and the
denoising property help to obtain the reconstructed imaijfe better visual percep-
tion quality. All of these considerations help to generatétdy reconstructed image

compared with conventional single-level optimizationlgem.

2.3.2 PNLS operator

Algorithm 1: PNLS
Input:
The imageX; and its corresponding sub-blocks,i = 1,...,N;
The number of sub-blocks found to construct PNLS operaitor,
Output:
The PNLS of sub-blocky;,i = 1,...,N;
1: forallx; e X;,i=1:Ndo
2:  The nonlocal regioMNL; of x; is located;
3: form=1:Ngpdo
4 The patcheg,n=1,..., Ns used to updat&™ are determined by solving

(2.23);
5: The patchz" is updated by calculating (2.24) and (2.25).
6: end for
7:  The PNLSy; of sub-blockx; is obtained by combining all the non-overlap
patcheg™ together.
8: end for

The self-similarity between the pixels in nonlocal areagh#f image has been

greatly explored in image processing [50] [51]. In this gett based on a visual
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perception metric-the structural similarity (SSIM)Ind&2], the PNLS operator is in-
troduced.

The SSIM index is described in (2.15) which mainly consitheeé components of
the characteristics of image, the luminance distortiom{éhe contrast distortion term

and the structural distortion.

SSIMxy) = (X y)c(X y)s(X y) (2.15)
where
2+
|(Xa y) - )—(2 + gz + C]_ (216)
B 25S, + G
c(xy) = RS (2.17)
Sx,y + C3
X, = — 2.18
o) = s (2.18)

wherex andy are two compared imagesandy are the mean values’ andsg are the
variances ok andy respectively, and, , is the covariance betweemandy.

The output of SSIM is confined between 0 and 1. The greater S§Ile more
similarity gains. In [53], the mathematical properties 818 is analyzed and a special

metric is defined. In the case that= c,/2 in (2.18), the SSIM can be expressed as

SSIMx.1) = Sy(x.1)S2(x 1) (2.19)
where
Siey) = 100y = O (2.20)
Xc+ys+C
Saxy) = oxy)s(xy) = % (2.21)

According to [53], the two termd; = V1 - S; andd, = V1 - S, are two metrics.

The special metri®neic Which is equivalent to SSIM is defined as follows.

Dmenid 1) = N0 1) + o(x 1)? = V2= Six )~ Saxp)  (2:22)
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When the nonlocal self-similarity between the pixels is cdeed,Detric IS Used
to measure the similarity between theéfdient sub-blocks. The diagram of collecting

similar patches from nonlocal region to construct PNLS tamst is shown in fig 2.4.

\ SSIM measure
—

— smaller patch similar patch

wan
L / |

I .
nonlocal region _ L

Figure 2.4: Collecting similar patches from nonlocal region

In an imageX, each sub-block;,i = 1,...,N is partitioned into smaller non-
overlap patcheg™, m = 1,..., Ngy, With the size ofb x b. The nonlocal regiomMNL;
can be determined in [51]. INL; of x;, Ns similar patcheg]', can be selected fa™

by minimizing the problem below.

argminy’ \/2 — Sy(Z", 2) - Sy(z™, 2" (2.23)

{Zln} n=1

whenz' € NLi,n=1,..., Nsfor eachz" is obtained, thef" can be updated by the sum

weighted described as follows:
Ns

ern = Z Z{]a)mn, m= 1, ceey Nsub (224)
n=1

whereNg,p IS the number of non-overlap patchesxin wherewn,, is determined by

the normalized variant dDmetic.

o = exf—h+2-Si(z". 7)) - So(z". 7)) (2.25)
Y. exp~h42-S:(z". 7)) - Sa(Z". 7))

i i 25
z'eNL
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whereh > 0 is the scaling parameter. After obtaining all the updat@dipesz”, m =
1,...,Ngyp in sub-blockx;,the PNLS ofx; can be constructed by aggregating them
together. Therefore, the procedure of calculating PNLE = 1,...,N for all the

sub-blocks in an image can be obtained in Algorithm 1.

2.3.3 Details of BCS-DL-BLO

To solve the bilevel optimization problem is offiiiculty because of the non-convex
and non-diferentiable properties in general [35]. In (2.14), the lovesel problem
is to optimize the sparse cihieient vectora; under the estimated image sub-blogk
So an initial estimatiorxi(o) IS necessary to start the process. Aftgris obtainedy;
is determined by the equality constraint in upper levelropation. Meanwhile, the
reconstructed; in objective function of upper level optimization can bevsal from
the terms of, norm minimization. This basic flow enforces us to develop,aandl,
norm based alternative minimization to solve the bilevebtem.

The initialized solution oky; is solved by OMP in (2.26) as follows. OMP can
provide a fast and promising solution for the bilevel op#iation to start with. By
setting a proper sparsity for each sub-block, the initeizolutions of all the sub-

blocks can be obtained by OMP in a short time.

. 1
minullelly + Iy - ®Dyaxill3 (2.26)

The upper level optimization of BCS-DL-BLO

Let t denote the index of iteration. Therefore in the upper ley@inoization, the
problem is written as

1 = argminlly; — ®gxill5 + Allx; — Vi[5 (2.27)

Xi

X

To solve (2.27), we make Taylor expansion to the teriiypf ®gxl|3 with respect

to the current poin!.

1
1@eX — Vill5 = |@eX — Vill5 + 2B L(PX! — yi)(X — X)) + Slxi = 15 (2.28)



2.3. BILEVEL OPTIMIZATION OF DICTIONARY LEARNING BASED BCS 26

By substituting (2.28) into (2.27), thus the quadratic fumtican be obtained.

. 1
Min(|@ex; — yill; + 2@3(Pex; —y)(4 =) + I = Xillz + Ax = vill;  (2.29)

The closed-form solution of (2.29) is easily solved by lestgiares minimization
from (2.30).

(BE@ex —y) + 306~ X)) + A0 ~V) = O (2.30)

And the solutiory; is

t

L 1.5 t&T t
Xj = ((5 + A1) (5 + Av; — ®g(PeX — Vi) (2.31)
wherel is identity matrix and is a positive parameter in Taylor expansion.

The lower level optimization of BCS-DL-BLO

The lower level problem can be solved by optimizing the felloy problem.

) 1
ot = minflexills + E”‘I’BXt+l — ®Dyaill3 (2.32)

Inspired by the fact that the iterative minimization method [54] [55] is féec-
tive in solving the LASSO minimizer in (2.32). To obtain fasinvergence and good
estimation ofa;, the fast iterative soft thresholding algorithm [56] is pted here.

During themth inner iteration in solvingx** in (2.32) ,«y is updated by

pr-1

pm+l

o™ = T+ P (ol - oY) (2.33)

where the functiorl () is defined byT(ci) = S,[ai + ®l(PpX — Pesvi)] and let
®.s = PgDy. The soft thresholding operat8y, is defined as

Xj — psgn(X)), IXjl > p
(Sulx)j = (2.34)

0, othemwise
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wherex; denotes thgth element in the vectax. In (2.33), the adaptive stepsize is
updated byp™?! = @ with p° = 1, the thresholgi = max®l(yi — @i,
where the operatanax-) denotes the maximum of the values in a vector and to start
the algorithm, the initial solution in (2.33) is set@s

The nonlocal similarity constrain is also updated during the iteration kil =
PNLS(Dkad). Our proposed method is shown in Algorithm 2. The two vdeabn
the bi-level problem are solved alternatively based,andl,; norm minimization. As
the sparse representation task in the lower level is relaxedme extent, the optimal
which balances the measurement error and the sparse nefat@s@error is guaranteed
to be found. The method is terminated while the maximum nurobéerationJ is

reached.

Algorithm 2: Proposed BCS-DL-BLO
Input:
The BCS measurementi =1,...,N;
The local dictionariesD,,k=1,...,K;
The maximum number of iteratiod
Output:
Reconstructed sub-blocks, i = 1,..., N; Initialize the sparse coefficients
vectorsa;
cfort=1,...,Jdo
Update the nonlocal similarity constraint loy= PNLS(Dy!);
Solve the upper level optimization (2.27) by (2.31);
Solve the lower level optimization by (2.33);
end for
. Apply this procedure to obtain all the reconstructed sudzkd.

o gk wNR

2.4 Experimental Results and Discussion

To illustrate the #ectiveness of our proposed BCS-DL-BLO, 23 benchmark natural
images with the size of 512512 are tested. Due to the space limitation, the results of
the selected eight representative images in figure 2.5 asepted. Some state-of-the-
art BCS methods including BCS-SPL-DWT [57], BCS-SPL-DDWT [57], YAL]58]

and NESTA [59] are used for comparison.



2.4. EXPERIMENTAL RESULTS AND DISCUSSION 28

Figure 2.5: Representative test images (a) Lena (b) Boats (baBa(d) Pepper (e)
Goldhill () airplane (g) baboon (h) elaine

To verify the advantages of bilevel optimization, the sgtgvel optimization prob-
lem in (2.7) which is solved by two-stage alternative optziation named BCS-DL is
also compared. The experimental results are measured kyetde signal to noise
ratio (PSNR) and some state-of-the-art perceptual imagktyjagasessment indexes
(IQA), such as SSIM, feature similarity (FSIM) [60] and lmgically inspired feature
similarity (BIFS) [61].

2.4.1 Parameter setting

The training set consists &f samples (image patches Bfx B), which are randomly
extracted from 15 benchmark test images from USC-SIPI imatgbdsé. K clusters
of sampled patches are obtained by K-means clustering. &iatbnary is trained
from respective group of sampled patches by KSVD. In our &tian, Lg = 20000,

K =5,B = 16,b = 4 and the size of each local dictionady is 256x 1200. In

PNLS, the size of nonlocal regianx w is 33x 33 andNs = 16. In BCS-DL-BLO, the
maximum times of iteratiod = 5. The weighting parameter of PNLSs set 0.3. The

number of iterations in OMP for initialization is set to 5. rRbe compared methods,

1The database is available at http:/sipi.usc.edu/dagétiasmbase.php
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YALL1? and NESTA are used to reconstruct the non-overlapped sub-blocks>of@6

in the image. In BCS-SPL-DWT and BCS-SPL-DDWThe sub-block size is set to
16 x 16 for fairness of the comparison. In BCS-DL, for two balangiagameters);

is set to 0.5 and, = 0.1. All the experiments are implemented in 5 runs on Matlab
2013a and tested on the computer Core i7 3.4GHz with 8 GB RAM.

(b) BCS-SPL-DWT (c) BCS-SPL-DDWT

(d) BCS-DL (e) NESTA (f) BCS-DL-BLO

Figure 2.6: Reconstructed results of Boats when sampling @ate (a)-(f)
PSNR/dB:22.46, 24.73, 25.19, 25.04, 25.28, 27.55.

2.4.2 Numerical and visual comparison with different methods

In order to validate thefectiveness of the proposed BCS-DL-BLO, the reconstructed
results under the sampling rate ranging from 0.1 to 0.5 amepaoved when the mea-
surement noise level is equal t®Q, where the sampling rate is definedyas N/M.

Both the visual quality and the statistical results dfefient methods are given. The

Gaussian random measurement madpix, which has been proved to be suitable for

2The code is available at http://www.caam.rice.edu/ ogition/L1/YALL1
SNESTA code can be downloaded from http://statweb.starédwd candes/nesta/
4The code of BCS-SPL is available at http://www.ece. mssiete fowler/BCSSPL/
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(b) BCS-SPL-DWT

MR TR

(d) BCS-DL
Figure 2.7: SSIM map of Reconstructed results of Boats samphte 0.1 (a)-(f)
SSIM: 0.7761, 0.7977, 0.8036, 0.7962, 0.8341, 0.8876.

different sparse representation basis to satisfy RIP and easplkenment [62] is used.

All the parameters in dierent methods are set where the best performances are ob-

tained.
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Image | Method|| PSNR(dB)| SSIM
[,NLS 36.51 0.9746
Lena
PNLS 36.47 0.9769
I,NLS 27.79 0.9314
Barbara
PNLS 28.85 0.9371
I,NLS 3112 0.9268
Boats
PNLS 31.05 0.9296
I,NLS 33.76 0.9658
Pepper
PNLS 33.80 0.9752
I,NLS 30.78 0.9395
Goldhill
PNLS 3084 0.9464

Table 2.4: PSNR and SSIM comparison gfILS and PNLSy = 0.3

The results in figure 2.6 and figure 2.8 show that all the mettuaah recover the
general shape of the original image. However, the imagesezed by YALL1, BCS-
SPL-DWT and BCS-SPL-DDWT are blurred. Although clearer reqoictibn results
are obtained by BCS-DL and NESTA, the existence of block a&itidi@grades the vi-
sual quality of the recovered image. By comparison, the megdBCS-DL-BLO not
only can well maintain the overall structure of the image,disio achieveféective per-
formance in block artifact reduction. The objects in imadesexample the boat body
and mast in Boat and the hair in Lena, are not reconstrudfedtiwely by BCS-DL
due to the intensive block artifact. Another reason lieshmfact that BCS-DL con-
siders sparse representation and minimizing the measuatexa& whole, which fails
to explore the inter-relationship, resulting in eitheraoarate reconstruction or sparse
coding. Although the filtering technique in BCS-SPL-DWT and BA3-DWT
help to enhance the smoothness of the area acréiesatit sub-blocks, the accuracy

of the recovered structure shows great deficiency. Espediaé specific structures
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(d) BCS-DL (e) NESTA (f) BCS-DL-BLO

Figure 2.8: Reconstructed results of Lena when sampling @& (a)-(f)
PSNR/dB:30.43, 32.55, 33.16, 35.88, 33.13, 36.47.

(such as the shape of eyes and hair zone in Lena, the mast ipdBeatot recovered
accurately and the appearance of jagged zigzag on the estydedrades the quality
of the reconstructed image. The proposed BCS-DL-BLO provideseramoothing
recovered image meanwhile maintains the structural featwith high accuracy.

SSIM map is a reliable metric to validate the perceptualaliguality of the image.
All the pixels in reconstructed image are compared with ¢haisoriginal image and
SSIM values of each pair of pixels are computed and draw inag gcale image.
The lighter the color of SSIM map is, the higher structuratifarity the two images
have. In figures 2.7 and 2.9, SSIM maps [52] of the reconsidlptsults in figures
2.6 and 2.8 are presented, respectively. It is obvious beaptoposed BCS-DL-BLO
outperforms the other methods both in global and local regiosisual quality.

The numerical results given in Table 2.1, Table 2.2 and T2lBéndicate that BCS-
DL-BLO outperforms the single-level reconstruction methotterms of PSNR, FSIM
and BIFS for sampling rate ranging from 0.1 to 0.5. Wher 0.1, BCS-DL-BLO
gains 0.4-2.5 dB higher PSNR than the best of the rest of rdstfar Lena, Barbara,
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Peppers, Boats and Goldhill. When= 0.3, it gains 0.3-0.65 dB higher PSNR than
the best of the rest of methods for Lena, Barbara, Pepperss BadtGoldhill. 1t is
demonstrated that the hierarchical relationship betweessorement error and sparse
representation error is properly modeled in a bilevel ofation problem which can

be dfectively solved.

2.4.3 Effectiveness of PNLS

To investigate the performance of the proposed PNLS, théonahsimilarity con-

straint based o}, (p > 1) norm distance metrid NLS) is used for comparison with
PNLS.|,NLS can be described as follows: For sub-blogkand its corresponding
partitioned patcheg", the similar patcheg! in NL; are selected by calculating the

expression as below.

S=z"-Zl, (2.35)
(a) YALL1 (b) BCS-SPL-DWT (c) BCS-SPL-DDWT
(d) BCS-DL (e) NESTA (f) BCS-DL-BLO

Figure 2.9: SSIM map of Reconstructed results of Lena sagppdite 0.3 (a)-(f) SSIM:
0.9430, 0.9601, 0.9631, 0.9658, 0.9667, 0.9769.
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where the smalle§ is, the higher similarity between the two patches. For &88)
both the numbers of sub-blocks used for aggregation aressé6 and in BCS-DL-
BLO, PNLS is replaced blNLS. The resultant PSNR and SSIM of the reconstructed
images are compared wher= 0.3, which are shown in Table 2.4.

In Table 2.4, although,NLS is able to obtain higher PSNR compared with the
proposed PNLS in some cases, PNLS outperfdyNg S in SSIM for all the tested
images. The comparison reveals that the introduction cfgpeunal quality measure
into the nonlocal similarity optimizing progress can imypeathe image perceptual
quality of the reconstructed image. PNLS $eetive and have the positive impact

on enhancing the perceptual quality of reconstructed image

(©) I,NLS (d) PNLS

Figure 2.10: SSIM map of the reconstructed results of Baradueny = 0.3, where
(c) and (d) are the corresponding SSIM map of (a) and (b) easgly; (a) SSIM =
0.9314 (b) SSIM = 0.9371.

The visual results of,NLS and PNLS are compared by SSIM map, figure 2.10
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compares the reconstructed results for Barbara which centa@mendous texture in-
formation. It is observed that the color of the SSIM map onright is lighter than
the one on the left. However, the improvement is only moeesatice the block arti-
fact still affects the visual quality. The reason is that complicateditestincrease the
difficulty for recovering the original image precisely. The exlgad boundary areas
among diferent structures are better preserved by PNLS. In addttierimprovement
in visual quality is also reflected in SSIM map, which indesathat the structural infor-
mation is well maintained by applying SSIM as the criterionrteasure the nonlocal

similarity among diferent image patches.

2.4.4 Effect of the number of atoms in dictionary and the number

of dictionaries

The redundancy of the local dictionary has tieet on the sparse representation of
each sub-block, which further influences the quality of tkeonstructed image. In
figure 2.11, PSNRs of the reconstructed image Barbara wheruthbar of atoms in
dictionary is equal to 6Q@00, 100Q 120Q 1400 and 1600 are given under the noise
level Q01.

PSNR vs number of atoms in local dictionaries

PSNR/dB

<>
>

i

L L
800 1000 1200 1400
The number of atoms in dictionary

Figure 2.11: PSNR of the reconstructed image Barbara vs nuailaoms in local
dictionaries

Theoretically, larger number of atoms can help to improwe gkerformances of
representation. However, more atoms also result in high@paitational cost. So, itis

desirable to find the trad€éo It is observed that the dictionary with 1200 atoms is able
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to achieve both good quality of reconstruction and resuik$s computational costs.
The reconstructed results undeffdirent number of dictionaries are also investi-
gated. In figure 2.12, the quality of the reconstructed imageomes better with the
increase of the number of local dictionaries, however, itasced that the change of
PSNR becomes ignorable aftér= 5. The influence of the number of dictionaries

on the reconstructed results is less significant than théteohumber of atoms in the

dictionary.

PSNR vs number of dictionaries under different SR
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Figure 2.12: PSNR of the reconstructed image Barbara vs nuohlctionaries

2.4.5 Effect of the noise in measurement space

To test the influence of the noise on our proposed method,s&ausoise with dier-
ent levels are added into the measurement space of imagelsths. Figure 2.13
shows PSNR of the reconstructed test image Barbara under ®Reis equal to
0.1,0.2,0.3,0.4 and 05. The noise level ranges from0Q to Q05 with the interval
of 0.01. Robustness of BCS-DL-BLO to noise is demonstrated that Wwéhricrease
of the noise level, PSNR decreases slowly in a certain rangettee trend remains

stable due to the denoising property of PNLS based on ndnioeans filtering.

2.4.6 Convergence analysis between single-level and bilevel opti-

mization

The convergence performance of BCS-DL-BLO is given in figurd Anthere the root
mean square error (RMSE) between the reconstructed iﬁﬁ&g&j original imageX

(RE) of Lena is recorded versus the iteration numbers whesahmling rate is 0.3 at
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PSNR vs noise level under different SR

PSNR/dB

‘
0.02 .. 003 0.04
Level of noise in measurent space

Figure 2.13: PSNR of the reconstructed image Barbara uniéferedit measurement
noise levels

the noise level of 0.01. RMSE is defined as:

RMS HX, X) = IX = Xl (2.36)

VMg

wherem, x m, denotes the image size. The measurement error (ME) veesasian
number is also presented in terms of RMSHS HY, @)2). Itis observed that RMSEs
tend to decrease dramatically at first then become stable tha iteration number
augmenting. In BCS-DL-BLO, the leader is to minimize the ME.c8ithe problem in
upper level is convex and nonnegative, the convergencadhesl. For the lower level
problem, only the near-optimal or local optimal can be aidiand the parameters
from lower level have #ect on optimizing the upper level. Therefore, by permitting
the tolerance in the constraint of lower level optimizatitire ME is guaranteed to be
gradually smaller.

To illustrate the diferences between the single-level in (2.8) and bilevel apam
tion, the measurement error (ME) and sparse representation (SRE) in BCS-
DL-BLO and the ME in BCS-DL are given in terms of RMSE. The SRE in BCS-
DL-BLO is calculated byRMS H@)A(, ®Da) and the ME in BCS-DL is obtained by
RMS RY, ®Da). The errors versus the iteration numbers for Lena whenahmbng
rate is 0.3 and noise level 0.01 are presented in figure 2.15.

It is indicated that all the errors tend to be smaller withitbeative process contin-

ued. The ME in single level optimization keep lying betwelea dther two errors (ME
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Figure 2.14: RMSE of the reconstructed image during thetitergrocess
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Figure 2.15: Errors comparison during the iterative preces

in bi-level optimization and SRE in bi-level optimizationjhe bi-level optimization
achieves better ME than that of single level, as the SRE igedlto certain tolerance
which enlarges the searching scope of the feasible sokutidlthough only the local
optimal is obtained, it is suggested that by consideringwteobjectives as a bilevel
optimization problem, better performance of the recomr$éaiimage can be achieved.
The theoretical convergence analysis is still a challeagethe nonconvexity of the
dictionary learning process and only the local optimal canfdund in lower level

optimization.

2.4.7 Computational complexity analysis

The complexity of our method comes from four aspects: thstehed-based multiple

dictionaries training process, the computation of the Pba&straint, the upper level
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optimization problem and the lower level optimization desh.

In the clustered-based multiple dictionaries trainingcess, for each dictionary,
the training process need}s(Ls(SzLB + ZBZLB)) operations for each iteration, where
S denotes the predefined sparsity for the training samplethemlustering process,
k-means method cosG(KICBZLS), wherel. denotes the number of iterations. So the
total computational complexity in DL is
O(TiterLs(SZLB + ZBZLB) + KICBZLS), whereTie denotes the total number of itera-
tions in DL.

To obtain PNLS constraint for sub-bloek, the computational complexity is cal-
culated as follows: each sub-block is divided into non-taggyed smaller patches with
the size ofb x b, therefore the nonlocal similarity constraint for eachcpatosts
O(|#] x 4b? + Ns x b?), wherew denotes the width of nonlocal searching window
(including non-overlapped patches) aNgdis the number of patches involved in com-
puting the perceptually nonlocal similarity. There ar@ﬂthE—jJ patches in one sub-
block, so the computational complexity for each sub-bls@@[ﬁ—jj ([{éJ X 4b? + Ng x b?)).

For each sub-block, the cost of sparse coding in the lowet tgstimization prob-
lem isO(ZB“).

The cost of higher level optimization problem is equal to
O(mB + B+ | & (|| x 4b? + Nsx b?)). The upper-level and low-level problems
are solved alternatively. Suppoges the total number of outer loops in our proposed
method. The cost for each sub-block is
O(3 (B + 38" + | £ (|1 ] x 462 + Ny x 1?))).

The reconstruction for each sub-block is more time-consgrtiian other methods.
In BCS, the running time can be reduced by some parallel impiéatiens such as
GPU acceleration. For KSVD and OMP used in offfioe DL process, someflicient

implementations described in [63] can also be applied.
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2.5 Conclusion

This chapter focused on bilevel optimization in dictionégrning based BCS. The
bilevel formulation of the problem is described and the dmehical relationship be-
tween optimizing the measurement error and sparse repatisenis formulated. A

perceptual nonlocal similarity (PNLS) based on SSIM isadtrced to reduce the block
artifact between the adjacent sub-blocks and utilize tkelgimilarity in nonlocal re-

gion. Moreover, a combination ¢f norm andl, norm minimization method is pro-
posed to solve the bi-level optimization problem. The exkpental simulations are
tested on images in benchmark dataset and the results shothhéhproposed method

outperforms some state-of-the-art methods both in nuleaind visual results.
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Image Method | y=01 [ y=02 | y=03 | y=04 [ y=05
YALL1 [58] 26.32 28.68 30.43 32.25 33.81

BCS-SPL-DWT [57] 27.36 30.38 32.55 34.30 35.91

Lena BCS-SPL-DDWT [57] 27.79 30.96 33.16 34.92 36.55
BCS-DL(single-level) 31.21 33.84 35.88 36.58 37.01

NESTA [59] 29.05 31.28 33.98 34.81 35.85

BCS-DL-BLO 31.66 34.40 36.47 37.08 37.27

YALL1 20.45 22.71 24.29 25.38 26.64

BCS-SPL-DWT 22.34 23.59 24.79 26.06 27.62

Barbara BCS-SPL-DDWT 22.63 23.93 25.36 26.97 28.70
BCS-DL(single-level) 25.02 27.24 28.20 29.44 31.22

NESTA 23.78 25.87 26.54 27.16 28.57

BCS-DL-BLO 2555 27.89 28.85 30.05 3163

YALL1 22.46 25.73 27.58 29.77 30.62

BCS-SPL-DWT 24.73 27.32 29.25 30.83 32.34

Boats BCS-SPL-DDWT 25.19 27.75 29.51 31.09 32.58
BCS-DL(single-level) 25.04 28.95 30.77 3191 33.04

NESTA 25.28 27.89 30.43 31.78 32.33

BCS-DL-BLO 2755 2941 3105 3217 3372

YALL1 25.64 27.65 29.94 31.51 33.76

BCS-SPL-DWT 27.94 31.23 33.12 34.47 35.70

Pepper BCS-SP_L-DDWT 29.55 31.82 33.62 34.35 35.62
BCS-DL(single-level) 30.21 32.26 33.32 34.87 35.69

NESTA 29.85 31.79 33.44 34.82 35.30

BCS-DL-BLO 3094 3278 33.80 3513 35.95

YALL1 24.25 26.55 27.82 29.67 30.29

BCS-SPL-DWT 26.69 28.55 30.10 31.41 32.74

Goldhil BCS-SPL-DDWT 26.91 28.91 30.37 31.71 33.06
BCS-DL(single-level) 28.13 28.82 30.46 32.25 33.14

NESTA 27.39 28.57 29.76 31.86 32.45

BCS-DL-BLO 2881 29.03 30.84 3256 3355

YALL1 25.41 27.90 30.38 32.32 34.07

BCS-SPL-DWT 25.04 28.33 30.94 33.07 35.05

Airplane BCS-SPL-DDWT 25.34 28.75 31.43 33.59 35.61
BCS-DL(single-level) 27.98 30.56 31.80 33.56 35.40

NESTA 26.70 29.60 31.59 32.82 35.00

BCS-DL-BLO 2862 30.71 3263 34.21 36.23

YALL1 20.18 21.04 22.15 23.29 24.41

BCS-SPL-DWT 20.37 21.55 22.62 23.63 24.71

Baboon BCS-SPL-DDWT 20.69 21.83 22.90 23.94 25.06
BCS-DL(single-level) 20.59 21.93 23.49 24.81 26.08

NESTA 20.21 21.72 23.19 24.10 25.75

BCS-DL-BLO 21.05 2223 24.17 2521 26.25

YALL1 28.79 30.75 31.97 32.97 33.96

BCS-SPL-DWT 29.34 31.19 32.30 33.20 34.11

Elaine BCS-SPL-DDWT 29.68 31.52 32.64 33.55 34.47
BCS-DL(single-level) 30.77 31.87 32.50 33.81 34.12

NESTA 30.30 31.64 32.32 33.62 34.45

BCS-DL-BLO 3115 3198 3285 34.05 3443

Table 2.1: PSNR/dB statistical results of reconstructedygsa
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Image Method | v=01 [ y=02 | y=03 | y=04 [ y=05
YALL1 [58] 0.9234 0.9585 0.9743 0.9834 0.9890

BCS-SPL-DWT [57] 0.9292 0.9639 0.9783 0.9863 0.9910

Lena BCS-SPL-DDWT [57] 0.9330 0.9662 0.9796 0.9870 0.9915
BCS-DL(single-level) 0.9633 0.9851 0.9922 0.9933 0.9944

NESTA [59] 0.9455 0.9726 0.9824 0.9888 0.9922

Proposed method 0.9737 0.9888 0.9938 0.9945 0.9949

YALL1 0.8726 0.9124 0.9370 0.9537 0.9668

BCS-SPL-DWT 0.8831 0.9186 0.9390 0.9557 0.9672

Barbara BCS-SPL-DDWT 0.8832 0.9232 0.9430 0.9571 0.9679
BCS-DL(single-level) 0.8882 0.9320 0.9563 0.9617 0.9704

NESTA 0.8789 0.9214 0.9427 0.9584 0.9687

Proposed method 0.8947 0.9374 0.9581 0.9634 0.9711

YALL1 0.8596 0.9161 0.9451 0.9638 0.9756

BCS-SPL-DWT 0.8726 0.9283 0.9550 0.9709 0.9807

Boats BCS-SPL-DDWT 0.8737 0.9269 0.9537 0.9699 0.9799
BCS-DL(single-level) 0.8997 0.9413 0.9701 0.9811 0.9825

NESTA 0.8846 0.9328 0.9621 0.9795 0.9811

Proposed method 0.9328 0.9580 0.9742 0.9825 0.9857

YALL1 0.9284 0.9588 0.9733 0.9821 0.9892

BCS-SPL-DWT 0.9324 0.9646 0.9774 0.9846 0.9907

Pepper BCS-SP_L-DDWT 0.9330 0.9662 0.9796 0.9870 0.9915
BCS-DL(single-level) 0.9625 0.9814 0.9845 0.9905 0.9918

NESTA 0.9466 0.9720 0.9822 0.9901 0.9917

Proposed method 0.9707 0.9865 0.9903 0.9912 0.9921

YALL1 0.8865 0.9206 0.9486 0.9588 0.9751

BCS-SPL-DWT 0.8927 0.9365 0.9588 0.9725 0.9815

Goldhill BCS-SPL-DDWT 0.8943 0.9372 0.9586 0.9721 0.9811
BCS-DL(single-level) 0.9364 0.9578 0.9731 0.9832 0.9893

NESTA 0.9228 0.9464 0.9670 0.9733 0.9882

Proposed method 0.9522 0.9618 0.9753 0.9859 0.9904

YALL1 0.9215 0.9484 0.9685 0.9813 0.9853

BCS-SPL-DWT 0.9277 0.9531 0.9736 0.9845 0.9896

Airplane BCS-SPL-DDWT 0.9323 0.9597 0.9778 0.9882 0.9916
BCS-DL(single-level) 0.9416 0.9683 0.9842 0.9920 0.9934

NESTA 0.9386 0.9633 0.9807 0.9894 0.9922

Proposed method 0.9475 0.9734 0.9893 0.9924 0.9938

YALL1 0.6721 0.7662 0.8243 0.8835 0.9255

BCS-SPL-DWT 0.6938 0.7743 0.8411 0.8873 0.9282

Baboon BCS-SPL-DDWT 0.7233 0.7791 0.8463 0.8927 0.9316
BCS-DL(single-level) 0.7464 0.7925 0.8753 0.9237 0.9427

NESTA 0.7342 0.7862 0.8602 0.9104 0.9362

Proposed method 0.7635 0.8158 0.8727 0.9248 0.9440

YALL1 0.9312 0.9525 0.9634 0.9751 0.9816

BCS-SPL-DWT 0.9356 0.9567 0.9671 0.9773 0.9848

Elaine BCS-SPL-DDWT 0.9384 0.9592 0.9693 0.9802 0.9884
BCS-DL(single-level) 0.9524 0.9725 0.9813 0.9895 0.9915

NESTA 0.9472 0.9633 0.9746 0.9862 0.9904

Proposed method 0.9651 0.9739 0.9837 0.9903 0.9918

Table 2.2: FSIM statistical results of reconstructed insage
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Image Method | v=01 [ y=02 | y=03 | y=04 [ y=05
YALL1 [58] 0.9083 0.9399 0.9554 0.9640 0.9840

BCS-SPL-DWT [57] 0.9123 0.9454 0.9606 0.9826 0.9833

Lena BCS-SPL-DDWT [57] 0.9176 0.9590 0.9693 0.9810 0.9831
BCS-DL(single-level) 0.9437 0.9799 0.9786 0.9851 0.9816

NESTA [59] 0.9433 0.9569 0.9629 0.9821 0.9764

Proposed method 0.9658 0.9786 0.9813 0.9876 0.9893

YALL1 0.8628 0.9011 0.9220 0.9396 0.9499

BCS-SPL-DWT 0.8779 0.9049 0.9225 0.9521 0.9524

Barbara BCS-SPL-DDWT 0.8825 0.9214 0.9274 0.9467 0.9515
BCS-DL(single-level) 0.8687 0.9145 0.9525 0.9558 0.9668

NESTA 0.8644 0.9025 0.9341 0.9491 0.9674

Proposed method 0.8917 0.9355 0.9578 0.9619 0.9689

YALL1 0.8566 0.8992 0.9386 0.9595 0.9616

BCS-SPL-DWT 0.8585 0.9101 0.9523 0.9709 0.9785

Boats BCS-SPL-DDWT 0.8661 0.9267 0.9447 0.9518 0.9780
BCS-DL(single-level) 0.8982 0.9308 0.9587 0.9675 0.9705

NESTA 0.8764 0.9198 0.9463 0.9692 0.9649

Proposed method 0.9299 0.9503 0.9658 0.9721 0.9794

YALL1 0.9124 0.9458 0.9626 0.9800 0.9874

BCS-SPL-DWT 0.9138 0.9493 0.9589 0.9647 0.9761

Pepper BCS-SP_L-DDWT 0.9329 0.9547 0.9616 0.9798 0.9734
BCS-DL(single-level) 0.9495 0.9688 0.9736 0.9780 0.9828

NESTA 0.9330 0.9664 0.9642 0.9822 0.9863

Proposed method 0.9656 0.9697 0.9793 0.9840 0.9873

YALL1 0.8696 0.9121 0.9324 0.9479 0.9605

BCS-SPL-DWT 0.8868 0.9239 0.9521 0.9623 0.9807

Goldhill BCS-SPL-DDWT 0.8938 0.9205 0.9540 0.9672 0.9726
BCS-DL(single-level) 0.9345 0.9524 0.9567 0.9823 0.9785

NESTA 0.9068 0.9384 0.9600 0.9565 0.9691

Proposed method 0.9380 0.9537 0.9720 0.9849 0.9862

YALL1 0.9089 0.9327 0.9596 0.9627 0.9730

BCS-SPL-DWT 0.9214 0.9406 0.9718 0.9654 0.9739

Airplane BCS-SPL-DDWT 0.9131 0.9432 0.9629 0.9746 0.9722
BCS-DL(single-level) 0.9316 0.9676 0.9835 0.9748 0.9817

NESTA 0.9238 0.9552 0.9721 0.9706 0.9766

Proposed method 0.9472 0.9684 0.9886 0.9788 0.9792

YALL1 0.6600 0.7566 0.8048 0.8652 0.9125

BCS-SPL-DWT 0.6938 0.7743 0.8411 0.8873 0.9282

Baboon BCS-SPL-DDWT 0.7072 0.7735 0.8281 0.8750 0.9128
BCS-DL(single-level) 0.7333 0.7805 0.8676 0.9053 0.9320

NESTA 0.7166 0.7857 0.8425 0.9044 0.9282

Proposed method 0.7455 0.8127 0.8676 0.9233 0.9306

YALL1 0.9282 0.9358 0.9452 0.9598 0.9728

BCS-SPL-DWT 0.9317 0.9528 0.9592 0.9756 0.9821

Elaine BCS-SPL-DDWT 0.9226 0.9426 0.9613 0.9656 0.9796
BCS-DL(single-level) 0.9512 0.9657 0.9688 0.9805 0.9835

NESTA 0.9394 0.9499 0.9632 0.9732 0.9825

Proposed method 0.9591 0.9660 0.9683 0.9809 0.9838

Table 2.3: BIFS statistical results of reconstructed images
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Chapter 3

A Two-phase Evolutionary Approach
for Compressive Sensing

Reconstruction

3.1 Introduction

The well-known compressive sensing (CS) [27] sampling eae signal processing
can be described as follows:

y=AX+n (3.2)

whereA € RN (M < N) is the sensing matrixx € RV is the signal transmitted
through the sensing matriy;, € R denotes the measurement vector an¢ RM
represents the additive independent identically disteithi.d.d) noise.

GivenA, to recoverx fromy, the sparsity of the signal, which denotes the number
of nonzero entries in the signal (or signal represented ensftecific domain) mea-
sured byi|x||o or ||X||; is necessarily exploited and the measurement efyor, Ax||§,
is minimized to solve the under-determined linear syster8ih). CS sampling has
been widely used in signal processing [64], wireless ndtf@b] and image restora-
tion [66], where the dimension of the signal for transmisg®largely reduced.

There exists two mainstream recover methods, greedy #igmsiand convex re-

laxation methods. Greedy algorithms, such as orthogontdiimay pursuit (OMP) [7]



3.1. INTRODUCTION 45

and its variants aim to find all the nonzero entries, in whiah éntry with the maxi-
mum greedy function value is selected and added into thd sehaero entries (active
set) at each iteration. Convex relaxation methods such &s f@suit denoising [67],
LASSO [43] and its variants, solvg norm minimization instead df norm which is
an NP-hard problem.

Greedy algorithms usually perfornffectively as long as the set of nonzero entries
(namely active set) are identified correctly. However, i pinesence of measurement
noise, all the entries are interrupted and some zero ergreesisually mistreated as
the nonzero ones. The exploration of the nonzero entriesnducted as a full search
among all the interrupted entries at each iteration whicheiases the sparsity dramat-
ically. Besides, the forward-based search brings about riblelgm that an incorrect
selection of nonzero entry at an earlier iteration influartbe results of selection in the
upcoming iteration, which may cause quality degradatiothefrecovered signal. In
addition, the cost function in conventional methods is aehated to the magnitudes
of the signal ignoring the features of sparse signals. Ieotd improve the recon-
struction quality, it is very critical to find the set of nomaeentries as accurately as
possible under the noisy environment and introduce a mataéel and discriminative
cost function to distinguish the nonzero entries from zereso

Compared with greedy algorithms, convex relaxation meth@i® better toler-
ance to the existence of noise. For example, basis pursndigleg is an fective
algorithm to deal with noise by minimizing the objective &tion which combines the
measurement error affig||; by Lagrangian multiplier. However, it is a thorny problem
that the quality of signal reconstruction is very sensitivehe choice of Lagrangian
parameter. To reduce the impact of noise, the idea of utdizihe denoising property
of I norm optimization motivates us to propose a two-phase #gorwhich works
in a coarse-to-refine manner to locate the nonzero moresgigcand obtain better
reconstruction quality. In phase 1, a certain number of ickate nonzero entries are
identified from the solutions obtained bynorm minimization, which removes some
interrupted zero entries and shrinks the scope of candelsttées. This can be re-
garded as a backward-based selection. In phase 2, basee idedhof forward-based

selection, the active set is further selected out of themdidates. The combination



3.1. INTRODUCTION 46

of both directed searches takes advantagésrairm minimization and overcomes the
shortcomings of conventional greedy algorithms.

There are two issues to be addressed in phase 1. First, iggested to use the
information from multiple solutions rather than one sadati On one hand, the statis-
tical analysis on these solutions provides more reliabtkiasightful observation on
determining the candidate nonzero entries; on the othet,hah, norm optimization,
the reconstruction accuracy is very sensitive to the chafit@agrangian parameter and
setting a proper value to achieve high reconstruction tyuisliof great dificulty. Re-
cently, the intrinsic tradddrelationship between the measurement error and sparsity
(I norm) is investigated in [10] and described as follows: thguirement of small
sparsity of signal and high reconstruction precision aneflmting with each other;
smalll; norm maintains a small sparsity, however may lead to theass in the mea-
surement error. So, in this paper, CS reconstruction carebéett as a multiobjective
optimization problem (MOP), where the measurement errdr|afy, are minimized

simultaneously as shown in (3.2).
min F(x) = min{|[x|[.. [ly — Ax|5} (3.2)

Multiobjective evolutionary algorithms (MOEAS) [68—70ave been widely applied
in solving multiobjective optimization problems (MOPsJ1H74]. The advantage of
using MOEAs lies in the fact that they are able to generatdiphlsolutions whose
objectives are presented in a monotone order in a singleatoich can provide more
regular and consistent information and better representrided relationship. In
addition, evolutionary algorithm is more robust to noiséjek usually provides better
solutions than convention&l minimization method (presented in section 3.4.3). The
decomposition based multiobjective evolutionary aldgont(MOEA), MOEAD, per-
forms rather competitive in obtaining good-quality Parsdtutions [75—77]. Besides,
for our problem, the decomposed subproblems have the sajaioé function with
that of its single-objective formulation, which intrinaity better described the rela-
tionship between the two objectives. Therefore, in thisgpalOEAD is applied to

generate a group of Pareto optimal solutions after a cemaimber of generations.
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The second concern is, given a group of solutions, how tahite the candidate
nonzero entries. The statistical feature of the solutiofd©OEAs plays an important
role, which leads to insightful and profound understandiftipe relationship between
objectives, variables and constraints. In [78], the neaghbod size of MOEAD is
automatically selected from some predefined values baseteoprobability deter-
mined by the number of generated improved solutions in tls ganerations. The
online self-adaption based on statistical results help&MO perform better than the
original version. In [79], the higher-level (from the whdbareto front) and low-level
(from preferred region of Pareto front) features are ex#h@nd data mining tech-
nique is applied to find the correlation between the varghibjective functions and
constraints. The obtained rules can be generalized totsk&esolutions which satisfy
the preference of decision makers. In this paper, we considestatistical features
for each entry: the appearance probability as a nonzerg antt magnitude variance
across dterent solutions. Then, according to these two criteriagaanchical cut-&
and combination strategy based on clustering is proposeéuitte the entries into dif-
ferent categories: important, contributive and ignoralidg discarding the ignorable
entries, the candidate nonzero entries are only composetpoftant and contributive
ones, the number of which is much smaller than that of all tiges.

Due to the randomness of the genetic operators evoluticagorithms and the
interference from the additive noise, some zero entries Ineayistreated as the can-
didates. Therefore, in phase 2, it is necessary to furtHectsthe active set out of
these candidates. To overcome the shortcomings of coovehtgreedy algorithms,
a probability based greedy randomized adaptive searcleguoe (PGRASP) is pro-
posed which considers appearance probability of the enttlga cost function. This
method mainly benefits from two aspects. On one hand, it gesva subset of can-
didates whose function values lie in a certain range (nothallcandidates) at each
iteration. This scheme guarantees that the second 'best’tba third 'best’ one and
so forth also have opportunities to be selected, which ierfiexible and able to gener-
ate more possible solutions. On the other hand, with thedfelppearance probability
integrated into the cost function, the selection is coneldietith more discriminative

power. By defining a proper neighborhood, the local searchgohare is performed
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to replace the selected entry in the active set if betteyeran be found, which helps
to find out the nonzero entries more accurately. In additigninitializing the active
set as the set of all the important entries, the iterativesinn the reconstruction are
significantly reduced. After obtaining the active set, thegmtudes of the signal can
be calculated by least squares method.

Regarding the combination of these two phases, our proposttiohfor CS recon-
struction is named as MOEBR-PGRASP. Experimental results on benchmark signals
and randomly-generated signals demonstrate that the ged@dgorithm outperforms
state-of-the-art CS reconstruction methods in SNR (sigmaleise ratio) meanwhile
maintaining smaller sparsity.

The rest of this chapter is organized as follows. In secti@) the related works
and background are presented. The proposed algorithmregluded in section 3.3.
Experimental results are given in section 3.4. The conaiussi finally made in section
3.5.

3.2 Related Works and Background

3.2.1 Related Works

It is noticeable that there exists some other works on apgIMOEASs to solve sparse
reconstruction problem. In [12], the author proposed a damie-based MOEA to
minimize the measurement error aigdorm of the signal to generate Pareto optimal
solutions. The solution on the knee region of Pareto froR} (B0,81] is selected as the
optimal solution. In [13], iterative threshold algorithinased org norm and% norm
regularization are proposed and integrated into the fraonewf the decomposition
based MOEA [74]. Weak dominance relationship among thet®atgective vectors
are investigated and the threshold sparsity is determifwedydhely norm axis with
which the optimal solution is selected. The majdtetience between these works and
our proposed method is the task of MOEASs. In our method, MOE#s be viewed
as a training process which aims to provide multiple Pareliations but not focus on

exploring the best solutions for this problem. So, they amegated without integrating
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other techniques or domain knowledge into the evolutioméggrithm, which is more

general and feasible to extend to other similar problems.

3.2.2 Background
Multiobjective optimization problem (MOP)

To introduce some definitions, we consider the following MOP

min F(X) = (f2(X), .. ., fm(X))

subjectto x S

(3.3)

wheremis the number of objectives. We have each objeckiveR" - Rt =1,...,m.

The solutiorx in the decision spacgtakes the formXy, . .., x,)". The objective vector
(f1(x), f2(X), ..., fn(X))" € R™ constitutes the objective space. Suppose there are two
different vectorsl = (ug,...,u)" andv = (vq,...,u)" € RE. uis said to dominate

if u <y forallt=1...,mina minimization context. A decision vectare S is

said to be Pareto optimal if there exists no any other sailutia S that dominates.

The set of all the Pareto optimal solutions are called Paet¢PS). The Pareto front
(PF) is defined as the set of all the corresponding Parete@iblgesectord-(x), which

is expressed aBF = {F(x) € R"|x € PS}.

MOEA/D

MOEA/D incorporates the decomposition approaches into the framkeof MOEA

by converting the MOP in (3.3) into a number of scalar optatian subproblems
which are optimized simultaneously through the coopenaimong the neighborhood-
ing subproblems. In MOEM, the decomposition approach is rather important. The
most commonly used method is the weighted sum approach\yf¢h works well

for the problem with convex PF. The subproblem can be expdisg

m
min ¢g”S(x|\) = Z A fi(X) subject tox € S (3.4)
t=1
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whereX = (14,...,4m)7, 4 > 0 andy ", 4, = 1 is the cofficient vector anc is the

variable to be optimized. More details of MOHAcan refer to [74].

Greedy Randomized Adaptive search procedure (GRASP)

GRASP [83] is a forward-based selection method, in which ethtion consists
of two phases, the construction of the greedy randomizesilfieasolution and the
local search procedure. In the solution construction, a REstificted candidate list)
is built which provides a subset of candidate elements, athvkhe cost function
lies in a certain range and one element is randomly selecotedid into the partial
solution until the optimal solution is obtained. After a farsolution is formed, a
local search procedure is used to search for improvemerthécurrent solution in
the neighborhood. GRASP overcomes the shortage of ovedgiresture, which is
caused by improperly only selecting the 'best’ element aheteration. GRASP has
been widely used in many areas, such as distributed virtwala@ments (DVES) [84],

neural networks [85] and planning [86].

3.3 The Proposed Algorithm

3.3.1 Algorithm framework

The framework of MOEAD-PGRASP is shown in Fig. 3.1. In phase 1, at first,
MOEA/D is used to generate the Pareto set and a group of preferhatibee are
selected. Then, the statistical features are extracted Rareto set and the preferred
solutions. At last, based on these features, hierarchitadft and combination strat-
egy (HCCS) is applied to obtain the initial active set. In phas¢he active set is
updated by the proposed probability based GRASP (PGRASPhanetonstructed
signal is finally obtained.

At first, MOEA/D is used to solve the MOP stated in (3.2), which can be decom-

posed into several scalar subproblems according to (3.4).

gy (XIA") = AraliXlly + Arally = AX[I5.T = 1, Npop (3.5)
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Figure 3.1: The framework of MOEA/D-PGRASP

whereN,,, denotes the number of subproblems. It is noticed that thautar of the
subproblem in (3.5) has the same form with that of the singieative problem in
terms of Lagrange multiplier in (3.6). Each subproblem isratependent single ob-
jective problem.

min [y — AX|[3 + AlIx]ly (36)

Basis pursuit denoising is arffective algorithm to solve the problem in (3.6). Itis
well known that the regularization parameter plays an irtgadrole in influencing the
reconstruction result. The solution is very sensitive ®dhoice of regularization pa-
rameter. To find the best parameters, it requires high ccatipatl cost for trying out
different choices. So, it is reasonable and meaningful to ap@BEMD to decompose
the MOP into several subproblems by assignirfiedent weight vectors and optimize

these subproblems simultaneously.

3.3.2 Select Preferred Solutions from Pareto Set

In our method, MOEAD is implemented in a DE (éierential evolutionary) manner
[75] to obtain the Pareto set. The detail of MOPADE for CS reconstruction is stated
in Algorithm 3.
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Algorithm 3: MOEA/D-DE for CS reconstruction
Input:
A: The sensing matrix;
y: The measurement vector;
T: The maximum number of iterations;
NS: Neighborhood size for each subproblem;
Npop: The number of the subproblems;
Output:
{F(xY), ..., F(xNrr)}: The approximated PF
Sp = {x%,...,xNee}: The approximated PS
1-Initialization : generate an initial population randomly and the weightmec
AL r=1...,Npop and sez = 0;
2-Decomposition decomposé-(x) into Ny, sub-problems as described in
equation (3.5);
3-Determine neighborhood compute the Euclidean distances between any two
weight vectors and selected the clogg& weight vectors to constitute the
neighborhood(r) = {ry, ..., rys} for theith subproblem;
4-Update:
while z< T do
forr=1,...,Nppdo
4.1-DE Setr; = r and randomly choose andrs from B(r). Then apply
DE operator to generate a new solutign
4.2-Mutation: perform Gaussian mutation grwith probability p,, to
generate solutiowg,;
4.3-Update of solutions Update the current and neighborhooding solutions
and their corresponding function valugg(x?), ..., F(xN)};
end for
z=2z+1;
end while
return S,
End

In Algorithm 3, DE operator is applied to reproduce the dohg which is de-

scribed as follows. For each elemepin solutiony = (y1, ..., y,), itis updated by

_ | X+ Fx (X2 —x7), with probability CR
Yk = (3.7)
X2, with probability 1 - CR
where CR and F are the two control parameters.

The Gaussian mutation in Step 4.2 genergtes= (yi1,...,yn) in the following
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way:
Mg(yk) with probability pn,;

I = (3.8)
Yks with probability 1 — py,

whereMg(yx) = min(max(V(yx. o), &), by), yk € [ax, bk] represents th&th variable
in y, N(-) denotes Gaussian distribution aamg is chosen byrg = (b — &)/G. In
(3.8),G andp,, are the two control parameters for the mutation operator.

In Step 4.3, the solutior" of the hth sub-problem is updated by comparing the
function values ok" andy,, in the following way. Randomly select an indaxXrom
the neighborhood,, if g/S(y,JA") < giS(x"IA"), then sex" =y, and the function
valueFV" = F(y,). This procedure lasts times, whera, is the maximal number of
solutions replaced by each child solution.

In real applications, decision makers (DMs) usually focnghe preferred part of
PF. Setting the preference has been proved tdlieete/e in helping decision makers
to select optimal solutions [87] [88]. Since the originarsal is usually not available,
solutions with small measurement error are usually regbadeyood reconstruction. In
Fig. 3.2 (a), an example of selecting the preferred solatlmased on PF is illustrated,
where x-axis represenitsnorm of the signal and y-axis denotes the measurement error
(ME). On the PF curve, the region marked in red rectangledaded and its zoomed-
in view is presented in Fig. 3.2 (b), where the red dashed lilenote the upper bound
of the ME,ME, and lower bound of MEME;, respectively.
3.

15 .,

o 2, .'..'.
10 - I
. s
5 1r

ME

Error
Range

5 10 25 30 16 18 0 22 24 28 30
L1 Norm of solution

(@) (b)

15 20
L1 Norm of solution

Figure 3.2: (a) lllustration of the selected zone on Pametotf(PF). (b) The zoomed-in
view of the corresponding error range

The lower bound of ME is equal to the smallest M, among all the solutions.
On the obtained PF, the largest ME is denotedwhyand the upper boundlE,, can

be determined by Theorem 1.
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Theorem 1 Given the sensing matrik € RN (M < N), suppose the additive mea-
surement noise ~ N(0,02), 31 < ¢ < d(D-1) + 1.d € [0,1], D > 1, the upper
bound for ME is ma(<cM|, CM(TZ),

For different signals, the ME ranges aré@ient. In Theorem 1d is a normalized
parameter. So, it can be set globally foffeient signals under fiierent noise levels.
The solution with ME lying between the upper bound and lowairia is selected as
the preferred solution. All the preferred solutions formeaBs. Es € RV can be
regarded as a matrix, of which each column denotes a selsaletion and there are

Sy solutions in total. The proof of Theorem 1 can refer to sup@etary documents.

3.3.3 Feature Extraction and Hierarchical Cut-off and Combina-

tion Strategy

The nonzero entries and zero entries in a sparse signal@amash Fig. 3.3. After the

Sparse signal of length N

N BN BEE EEE

entry; ie[l,N]

Figure 3.3: The definition of entry in sparse signal. Eaclthldenotes an entry of the
sparse signal, where the colored denotes the entry withemormmagnitude (nonzero
entry) and the uncolored is the entry with the magnitude af geero entry).

active setke,, which is made up of all the nonzero entries, is determirtezlyécovered

signal can be obtained by least square method.
R -1
% =|A(E)AGEl)| ALED)TY (3.9)

whereA(:, E;) denotes the submatrix containing the columns specifiedersetE,.
So the objective of the reconstruction is to find the grounithtactive set as accurately

as possible.

Feature Extraction

We consider the following two statistical features to aigtiish the importance of each

entry in signal :
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First, in Es € RN each column represents a recovered signal preferred by de-
cision makers. We apply the hard thresh@lgeshoiq to filter the data inEs. For an

elements € Eg, it is updated by

S, |S| > Cthreshold;
s= (3.10)

Oa |S| < Cthreshold

whereCinreshold = \/@ andE = SEZE & denotes the energy &s. Then, count the
number of the nonzero elememgsi € [1, N] in ith row of the update&,. The appear-
ance probability (AP)p; of entryi as nonzero entry is calculated py= ¢/, g,i =
1,...,N. All the solutions inEg achieve small ME which indicates good reconstruc-
tion, so the entry with higher AP as a nonzero entry is moraiptesto be the nonzero
entry in the recovered signal. All thes with respect to entryare obtained to form
AP set. The structure of théh element in AP set is defined asy).

Second, we evaluate the importance of the entoy calculating the magnitude
variance (MV)y; of theith row inS,. As S, contains all the Pareto optimal solutions
with varying MEs (from small to large), the magnitude of innfamt entry should be
changed significantly for elierent solutions. So larger MV indicates more contribution
that the entry makes in the reconstruction process andealjghwvith respect to entriy

form MV set. Theith element in MV set is denoted by §).

Hierarchical Cut-off and Combination Strategy (HCSS)

The statistical features, AP and MV, for each entry are oleti based on which the
entries can be categorized into three types: importantribotive and ignorable in the

reconstruction process. The definitions are as follows:

a. important entry: the one with both largeanduv;, which is regarded as a nonzero

entry;

b. ignorable entry: the one with either very smalbr v;, which is regarded as a zero

entry;

c. contributive entry: the one lies between the aforemestiotwo types of entries.
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Neitherp; noru; is very large or ignorable.

The contributive entries majorly come from two aspects. @afvand, the nonzero
entry with small magnitude may not have a large AP, becausetmes it is forced
to be the zero entry in the feature extraction step, whicleloitne AP of this entry
to be a nonzero entry. Therefore, these entries may be edludcontributive ones.
On the other hand, due to the randomness of genetic opesasome zero entries
are mistreated as the nonzero ones in solving the MOP, whielalao included in
contributive entries. Therefore, to locate the nonzeraenaccurately, it is necessary
to distinguish these two types of entries in contributivesnn this case, the nonzero
entries are made of all the important ones and partial dmritvie ones.

In order to find the nonzero entries, the initial step is teedaine the important
ones, contributive ones and ignorable ones. Accordingeal#finitions given above,
the ignorable ones have either small AP or MV, so it is morevearent to determine
the ignorable entries firstly from AP set and MV set, respetti Then, the important
ones and contributive ones can be obtained from the rengaemtries. Clustering
is an dficient unsupervised learning tool to partition the data base the selected
features. The significant advantage of clustering is thatpidrtition is conducted in
a data-adaptive way and fit for the data structure. Therg@i@erarchical cut4d
and combination strategy (HCSS) based on clustering is gexpto obtain these three

types of entries in recovered signal.

AP set Clustering 1 MYV set
«—
set A |ignorable set B ignorable
Cut off Cut off Layer 1
.| Combination | _
Set C
Clustering 2
B Layer 2
A
important |contributive
(B2 (0]

Figure 3.4: The procedure of HCCS



3.3. THE PROPOSED ALGORITHM 57

As shown in Fig 3.4, there are two layers in HCCS. In Layer 1, lensecluster-
ing [89] is applied to all theys in AP set and all the;s in the MV set, respectively
(clustering 1). The ignorable entries are discarded andeifmaining entries in AP set
and MV set constitute set A and set B, respectively. Thisf€stoategy is described

as follows:

1. SetKyq as the initial number of clusters for K-means clustering apgly it to
AF set or MV Set;

2. Calculate the mean value Kiq4 cluster centers;

3. If % >1-¢,k=1,..., Ky, combine the satisfied clusters together to
form a new clusteE., whereclais the vector consisting of all the cluster centers

clay andmear{-) denotes the operator to compute the mean value of 1D vector;

4. Update the number of clusters Ky = Ki4 — |E¢| + 1 and discarde., where|E,|
denotes the number of clustersigand all the elements iB; are the ignorable

entries.

In Layer 2, set A and set B are combined together and two elesy@randy;, that
share the sameare preserved to form a new element with the structung,@;) in
set C. In addition, the entry that only hpsor v; is removed from set C. The element
structure of set A, set B and set C is given in Fig 3.5. ThenCsistdivided into two
groups: the important entrie§; and contributive ones;,, according to the results of
k-means clustering (clustering 2) on the dafa, «), of which the procedure is given

as below.

1. SetKyq as the initial number of clusters for K-means clustering apgdly it to
set C;

2. Calculate the mean value of tKgy cluster centers;

— 2
3. |f Iocmeancia;

ImeaR(Cia2)E >1-6,k=1,...,Ky, combine the satisfied clusters together

to form a new clusteE,., wherecla2 e R>K« is a matrix with each columalay
andmear2(cla?) returns a vector with size 2 1, where each row is the mean

value of the corresponding row of the 2D vectta2;
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4. Update the number of clustefs = Koy — |Exc| + 1 and seEj, = Ey, where|Ey|

denotes the number of clusterskn..

entry entry entry
Set A a, AP a, AP a, AP
Set B entry MV entry MV s entry MV
b, b, b,
t . .. L.
Set C eniry AP MV wee weo i €8, S=A.position() B.position

One simple example of element structure in set C

entry AP a, = bz

al

T

[ entry

! MV

i b,

' .=

I /
entry

P AP MV

Figure 3.5: The structure of the elements in sets A, B and C.sithple example of
how the elements in set A and set B are combined to generat2Dttedement (the
entry index are not included) in set C is presented, wher@db, denote the same
position and = a; = b, is recorded for new element in set C.

3.3.4 PGRASP

As mentioned above, we need to further screen some of theilmainte entries and
add them into the active set, which are usually regardedesdhzero entries with
small magnitude. Greedy algorithm is a good choice for thabjem, in which one
entry is chosen based on the defined cost function and adtteth@aactive set at each
iteration. However, in the presence of noise, the cost fanahay not be accurate
enough to help select the entry with very small magnitudeaddition, as the greedy
scheme only allows to select the 'best’ entry measured bgadlkefunction among all
the candidates, there is only one possible solution availalb the selected entry in
the current iteration is not correct, the selection resuoltee upcoming iterations will
be dfected. GRASP, a meta-heuristic method, often deals withkihts of problem
effectively. It provides a subset of all the candidate entried @ach entry in this
subset has the opportunity to be selected at the curreatider So, GRASP is able
to generate more possible solutions without forcing to slkedbe 'best entry’ at each

iteration. In original GRASP, the selection of the elementsRCL is similar to a
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random sampling procedure which has lotiicency and all the elements are treated
equally. In order to increase the discriminating power @ $lelection, a probability
based GRASP (PGRASP) is proposed, where AP of each entry iddeosd in the
cost function. PGRASP is described in Algorithm 4, where tmportant phases are
included: the probability greedy randomized construc{iB®GRC) and local search

procedure.

Algorithm 4. PGRASP
Input:
Xc. The initial solution;
EQ: The initial active set:;
EQ: The initial inactive set;
Output:
Xopt: The optimal solution
1-Initialization : RCL= EY; Xopt = X¢; | = 1;
2-Set up the neighborhood of elemenit Divide E(O) into K clusters according to
kO(i) in (3.14), wheré € E?;
Find the entries belonging to the same cluster withconstruciN(i) as the
neighborhood of entryand randomly select an entirg E? to start Step 3;
3-Generate the optimal solution
while The neighborhood of selected entr\N(i) # @ do
3-1 PGRC
Evaluatec'(i) for all i € E|%;
Select elemente RCLwith the largest value of cost function described in
(3.14);
3-2 Update the active set and the inactive set
Removei from E|* to obtainE] ;
EI EI -1 U { }
3-3 Reevaluate the incremental cost and update the reconsiction
residual:
Xopt = [AG, EDTAG. E] G, ED
a=p(0-1)+7
3-4 Local search Procedure
Xopt = LS(Xopt);
=1+ 1;
end while;
return  Xopt;
end PGRASP;

In Algorithm 4, the inactive setis defined as the set of cbntive entries. PGRASP
works in an iterative way, in which one element from inacte¢is selected according

to the value of cost function and added to the active set tiiterminal condition is
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satisfied. We initialize the active sBf” = C, and inactive seE” = C,. The initial
solutionx. can be obtained by (3.9) with, replaced byE{.

PGRC

PGRC is used to determine the RCL and select the candidates zdnooentries based
on AP. Atlth iteration { > 1), the incremental cost of entie E|, is calculated by

di)=AG) Ll =1, iter (3.11)

whereA(:, 1) denotes théth column of the sensing matrix. The residual,_; is ob-

tained at the previous iteration.
M=y —ACE ) Xops | = 1, iter (3.12)
whereE, ! denotes the active setlir- 1th iteration. So, RCL can be determined by
RCL« {i e E| |d... < (i) < C + (Chay— Crir)) (3.13)

In PGRASP, the suppressing parameidnas the linear relationship with the it-
eration indeX. B8 € (0,1) andy € (0, 1) are the positive parameters to determine the
suppressing power. With the increasing number of iteratitite search scope becomes
larger and PGRASP is gradually approaching to an entirelgayralgorithm, ensuring
that the entry with high cost function can be eventually cele.

The cost function to be maximized in PGRASP takes AP of theesninto con-

sideration, which is expressed as
K@) = c(i) + A'p;,i e RCL (3.14)

where' is the weighting parameter. For simplicity, is set as 1. To eliminate the

influence of the data with fferent orders of magnitude, the function values of the
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elements in RCL in each iteration are normalized in (3.15) &b, respectively.

c(i) = ¢(i)/ Z 0) (3.15)
ieRCL
') = pl/ D, pi (3.16)

ieRCL

The local search procedure

The dfectiveness of the local search in PGRASP depends on the aefinftneigh-
borhood structure and the starting solutions. Since thirggasolutions are already
determined by the initial active set, a proper neighborhsiodcture is necessary to
be designed. In PGRASP, the neighborhood of each elensesefined as a group of
elements that share the same cluster with elemehhe groups are obtained by ap-
plying K-means clustering to the all the elemerffs, v;),i € E} . The neighborhood
structure is shown in Fig. 3.6, where the circle in red repmésthe selected element in
each cluster and its corresponding neighborhood is a detding the other positions
in the same cluster. In Fig. 3.6, for a signal with lenbtk- 100 (so each entry should
be confined as an integer between 1 and 100), the inactivE!Seis clustered into
four groups. In each group, the selected element has thrglelbwehood elements. In
PGRASP, only one element is selected from the inactiviESétat Ith iteration. The

local search (LS) procedure is shown in Algorithm 5.

Algorithm 5: LS

1: Randomly choose one eleméntrom N(i) to replacs;
2: Compute the solutiorx;, ., andr’;
=y —AC EF)Xops
=y —AC B X
30 {113 < lInili3
Replacd withi" in E} andi” with i in E/**, respectively;
Updatexop: = x;pt;
end if;
4: return Xopr;

opt

PRASP is stopped when the neighborhood of any selected enémypty, which
ensures that limited number of entries is added into theexget to maintain small

sparsity. The design of the terminal condition also guaasithat the entries with high
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The initial inactive set
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{24,2,35} {23,9,26} {13, 52,45} {49, 73,29}
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Figure 3.6: The schematic diagram of neighborhood stracturfake a signal with
lengthn = 100 for example, the initial inactive s&° is grouped into four clusters.
The selected entry in each cluster is marked red. The neigbbd of the selected
entry 76, 34, 92 and 57 have the neighborhoo{®df2, 35},{23,9, 26},{13,52, 45} and
{49, 83, 29}, respectively.

AP can be eventually selected withfscient iterations, since these entries are in the

same neighborhood with each other.

3.4 Experimental Studies

3.4.1 Test problems

Benchmark problems in the toolbox of SPARE®e tested to evaluate thfective-
ness of the reconstruction algorithms. The selected beadhproblems include two
1D sparse signals (Gausspike and Sgnspike) in the spati@idand two 1D signals
(Gcosspike and Jitter) sparsely represented under spbasisB. Besides, one 2D
signal is tested to evaluate the robustness of M@@ERGRASP. For Gcosspike and
Jitter, the measurement error is expresseflyasM 6|5 , whereM is the equivalent
measurement matriM = AB, 8 denotes the sparse dbeient vector and\ is a Gaus-
sian random matrix. The tested 1D signals are shown in Figir the 2D signal, the
detail is described in 3.4.7.

To validate the generalization of the proposed MQEAGRASP, some randomly-
generated 1D sparse signals are also tested which are etbiaithe following way.
At first, the nonzero entries of the signal are randomly seteevhich constitute the
active set. Then, the magnitudes of these entries are elt&iom the standard normal

distribution. At last, the magnitudes of the signal are rareed. The length of the

thttp:/iwww.cs.ubc.callabs/scl/sparco/
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Figure 3.7: Test signals: (a) Gausspike (b) Sgnspike (ck&uke (d) Jitter (e) Sparse
coefficients of (c) (f) Sparse coefficients of (d).

signal is 1000.
In addition, one real-world benchmark dataset is testedrtbér validate the prac-
ticality of the proposed method. Due to the page limitatiooth the graphical and

numerical results are provided in the supplementary nedseri

3.4.2 Experimental setting

In MOEA/D-DE, the number of sub-problené,,,, the neighborhood size for each
sub-problenN S and the maximum number of iteratiomhave défects on the obtained

solutions. Since we consider gathering a group of solutwish are near-optimal,
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a large number of iterations is necessary. Besides, moreahlbms are able to pro-
vide more useful information contained in the sample settis beneficial for the
decision maker. Considering the overload of computatioast that evolutionary al-
gorithm brings, a moderaft and N, are set. The parameters of MOEADE for

CS reconstruction are listed in Table 3.1.

Table 3.1: Parameter setting of MOEA/D-DE for CS reconstounct

Parameters Gausspike Sgnspike Gcosspike Jitter 2D sigaradlom

Npop 1201 1201 1201 1201 1601 1201

T 4000 6000 8000 6000 10000 4000

NS 200 200 200 200 200 200

CRF 1,05 1,05 1,05 1,05 1,05 1,05

G,pm  20,1/1024 20,1/2048 20,1/1024 20,1/1000 20,1/4096 2000/1

The number of selected preferred solutioNg,depends on the parameter, A
smallerd is preferred, as the satisfied solutions have relativelyllv&i which indi-
cates a good recovered signal. In the experimetig,set to 0.03. In HCCX 4 = 6,

Kog = 6, 6 = 0.02 ande, = 0.05. In PGRASP, by empirical studies, the parameters
(8,v) in linear suppressing function in PGRC are set as (0.2,101,0.2), (0.1,0.05),
(0.5,0.5) and (0.35,0.1) for Gausspike, Sgnspike, Gckesand Jitter and 2D sig-
nal, respectively, with which MOE/®-PGRASP can achieve the best reconstruction
result. The number of clusteksto define the neighborhood is set as 4. For randomly-

generated signal, the setting details are given in 3.4.6.

3.4.3 Compared with other CS reconstruction methods on 1D sig-

nal

The results of our proposed MOHA-PGRASP are compared with some conventional
methods and MOEA methods. The conventional methods inddades pursuit denois-
ing (BPDN) [67], SPGL1 [10], Orthogonal Matching Pursuit (BM[7], Smoothed
LO (SLO) [4] and Elastic-net [90]. For MOEA methods, to valid the &ectiveness
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Table 3.2: The performance comparison of the reconstruntiods under the sam-
pling rate of 0.2

BPDN SLO OMP SPGL1 EN M+GRASP|MOEA/D-best Proposed
al b2 | a b a b a b a b a b a b a b

0.01 |21.49 25.4332.22 25.0433.96 24.1536.20 25.0829.98 24.08§36.29 24.03 36.9 24.53(39.97 23.99
0.02 |20.61 25.8526.61 25.9326.59 24.3329.06 25.8624.81 23.9831.22 23.9431.46 24.43|33.81 23.91
Gausspike 0.03 [19.27 26.4321.56 26.8422.81 24.5325.45 26.8721.36 24.0128.01 24.0327.88 24.21(29.69 23.99
0.04 (17.75 27.1119.76 27.7§17.75 24.5323.71 27.9819.11 24.1225.13 24.0023.42 24.53|26.99 23.87
0.05 |16.55 27.8318.75 28.7218.10 24.5020.91 29.1317.30 23.9822.82 24.2121.32 24.07|25.17 23.92

0.01 |20.80 23.4832.19 22.6127.72 20.0034.92 20.0036.67 22.5138.43 20.1731.78 22.88|44.01 19.99
0.02 |21.38 24.5728.08 24.9333.41 20.0129.07 25.0628.89 19.9933.45 20.3428.30 23.03|37.99 19.97
Sgnspikeg  0.03 |20.59 25.9825.24 27.2729.88 20.0126.55 27.3025.37 19.9931.76 20.5124.56 23.21|34.47 19.96
0.04 [19.68 27.5022.93 29.2930.34 20.0423.07 30.0722.87 19.9928.59 20.6822.77 23.31|31.97 19.94
0.05 |18.71 29.0720.87 31.5628.40 20.0421.76 32.4720.93 19.9926.51 20.8520.85 23.55|30.03 19.93

0.01 |[25.32185.1(r4.07 185.3826.42 171.226.43 183.227.32 178.6@25.57170.3224.52 188.4526.57171.79
0.02 |25.29 185.184.05 185.4]26.41 173.5/26.37 185.1(R7.27 178.6[25.56 172.3(P4.16 186.8(027.33 171.91
Gceosspike  0.03 |25.97 185.3[24.02 185.686.69 174.5/26.26 186.9/26.97 174.6/26.67 173.9525.09 192.1927.04 172.26
0.04 |26.53 185.483.97 185.8826.28 173.9825.77 188.7{26.72 173.6825.16172.7024.53 191.5526.79173.57
0.05 |25.46 185.7[23.91 186.0424.96 176.125.39 190.625.66174.37124.77 174.4823.44 185.6225.54174.31

0.01 |17.99 5.16|23.53 3.46|29.69 1.85|21.35 2.85(29.34 1.77|31.90 1.79|31.39 1.74 |33.91 1.77
0.02 |16.94 5.98|17.39 5.16|23.67 1.97(16.32 4.56|23.33 1.75|24.25 1.84|23.84 1.73 |27.89 1.79
Jitter 0.03 |[16.36 7.90{13.95 6.79|20.15 2.08|13.59 6.82(19.80 1.77|19.86 1.89|16.36 1.63 |24.37 1.82
0.04 |[15.20 8.43|11.19 8.25|17.65 2.19|11.69 8.45(17.30 1.87|16.42 1.95/11.31 1.85 |20.93 1.84
0.05 |[13.77 9.82|8.46 9.48|15.72 2.31|/9.94 10.3515.37 1.88|14.59 2.00/9.93 1.76 |19.93 1.87

1SNRindB
2|y norm

Signal |noise leve|

of PGRASP, M-GRASP in our experiment is defined as the algorithm which appli
MOEA/D-DE to get the PS without considering AP in the cost functdrfGRASP.
We also choose MOE/®-best for comparison, which denotes the solution with the
highest SNR from PS obtained by MOHEXDE in our method.

In these comparative methods, SP&lslthe state-of-the-att; norm optimization
algorithm that takes the trad&onto account. BPDN is the most popular algorithm
for Ly norm minimization. OMP is the representative greedy atboriand SL8,
which considers approximatinigy norm and has been proved to be superiotio
norm optimization. Elastic-net denoted by EN, is the stdtd#ie-art LASSO based
regression method.

In our experiment, the error tolerance of BPDN is set as &40id the Lagrangian
multiplier is set according to [67]. OMP is terminated whba érror tolerance reaches

0.02. The parameters in SPGL1 and Elastic-net are set whereeist performances

°The code of SPGL1 is available at http://www.cs.ubc.calsti/spgll
3SL0 code can be downloaded at http://ee.sharif.edu/ SL.zero
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are obtained. The code of BP and OMP are available from The SPARBGIDOX. All
the experiments are simulated on Matlab 2013a on the com@ote i7 3.4GHz with
8GB RAM. To reduce the randomness of the measurement madigk, éxperimental
result is recorded based on the average of 15 runs.

In Table 3.2, SNR anld norm of the reconstructed signals undefeatient noise lev-
els whenS R= 0.2 are shown (more statistical results wi&R= 0.25,SR= 0.3 and
SR= 0.35 are presented in the supplementary materials). By cosgrarMOEAD-
PGRASP can achieve 1.8-3.8 dB gain for Gausspike comparédothier methods.
Meanwhile, the smalledy norm can be obtained, followed by Elastic-net, which
is very competitive in maintaining small norm in reconstruction. The proposed
MOEA/D-best has the second best results, however the sparditg sbtution is worse
than that of OMP and MGRASP. For Sgnspike, the advantage of MGEAGRASP
is very significant, whose SNR is 1.6-7.4 dB higher than ttidhe second best one.
SPGL1 and SLO fail to maintain the sparsity with the increaseoise level. For
Gcosspike, the highest SNR is also obtained by MOERGRASP when the noise
levels range from 0.01 to 0.05. MOHA-PGRASP achieves the competitiyenorm
compared with OMP and MGRASP, which indicates that the design of neighbor-
hood and terminal condition in PGRASP guarantee the limitechlver of selected
entries to maintain smaller sparsity. For Jitter, SNR ofrémovered signal obtained
by MOEA/D-PGRASP is the highest, although MOmBAbest shows the smallekt
norm among all the methods. A too small sparsity results enuhacceptable RE. It
is also demonstrated that BP and SPGL1 are not vegcive to recover the signal
which is very complex in space domain.

From the numerical results, it is demonstrated that theratdges of the proposed
MOEA/D-PRASP come from two parts. In the first phase, MQEAE is applied
to obtain a group of promising solutions. Compared with BPDOi¢, best solution
obtained by MOEAD-DE has already gain better SNR and smalarorm, because
these multiple solutions are solved interactively which caduce the féect of the
noise more significantly. Besides, the solution obtained I8WD-DE is also very
competitive compared with that of OMP and SLO, as optimizingprm is more robust

to noise than minimizing th norm. In addition, the statistical features of each entry,
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AP and MV, are extracted from the group of solutions, basewlbich the majority
of the nonzero entries can be identified more accuratelyarfitet phase. Although
the Elastic-net considers multiple solutions, it ignotes $tatistical features of these
solutions and overstress the sparsity, which results itatively small SNR. SPGL1
takes the traddbrelationship into account, however, it is only based onlsisglution
and fail to explore the statistical properties of multipbéusions.

In the second phase, the feature of AP is incorporated irt@tbeedy function of
the proposed PGRASP, which provides more informative featudistinguish the re-
maining nonzero entries from zero ones. It is worth notireg 1OEA/D-PGRASP
outperforms M-GRASP, which indicates that incorporation of AP into the dast-
tion of PGRASP provides better discriminative power to detee nonzero entries
more accurately.

We also conduct the Wilcoxon signed ranks test (WSRT) sugdeés{91] on both
the SNR and.; norm results in Table 3.2, where the pair-wise comparisanase
between our proposed method and each of the compared methtdds paper. In
the comparison, 20 results (one column in Table 3.2) for edgbrithm is used as
input and both the test results are recorded in Table 3.3. MOG&A/D-PGRASP
shows an improvement over all the compared approaches Wetrehof significance
a = 0.01 in terms of PSNR ant; norm, respectively, wher@" denotes sum of the
ranks that the proposed method outperforms the compardtbchandR™ represents
sum of the ranks for the opposite} + R~ = 210. By obtaining the significance value
p in Table 3.3, it is demonstrated that can reconstruct thggrai signal precisely and
significantly outperforms the conventional methods anattimepared MOEA methods

by statistical analysis.

3.4.4 Effect of the number of preferred solutions

In this subsection, thefiect of S, on the quality of reconstructed signal is investigated.
We test four 1D signals. For fairness, in MOEAPGRASP, the parameters exc&pt

in the experimental simulation are not changed. ME and SNB@freconstructed
signals whers, is equal to 300, 600, 900 and 1200 are plotted in Fig. 3.8 and39,

where 'NS’ denotes,,.
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Table 3.3: Wilcoxon signed ranks test results for the retranted results when sam-
pling rate is equal to 0.2.

SNR Comparison R R p-value SNR Comparison R* R p-value
vs. BPDN 210 0 ®6x10° vs.EN 201 9 B3x10*
vs. SLO 210 0 ®6x10° vs. M+GRASP 210 0 85x10°
vs. OMP 210 0 @0x10° vs. MOEA/D-best 210 0 86x10°
vs. SPGL1 210 0 86x10°

L1 norm Comparison Rt R p-value L, norm Comparison R* R p-value
vs. BPDN 210 0 ®6x10° vs.EN 196.5 13,5 D0x 1073
vs. SLO 210 0 ®6x10° vs. M+GRASP 182 28 00x10°3
vs. OMP 195 15 79x10* vs. MOEA/D-best 195 15 79x10*
vs. SPGL1 210 0 86x10°

In Fig. 3.8, MOEAD-PGRASP withNS = 600 obtain the smallest ME in recov-
ering Gausspike, Sgnspike and Jitter. For Gcosspike, tambperformance when
NS = 900 is better than others, although bdis = 300 andNS = 600 can generate
the smallest ME twice (but highest ME twice and significanttihation). In Fig. 3.9,
the highest SNR is obtained for Sgnspike wi® = 600. For Gausspike and Jitter,
MOEA/D-PGRASP withNS = 600 achieves the highest SNR in most cases. But for
Jitter, larger value oNS improves SNR significantly. For GcosspikgS = 900 is
suitable for getting the highest SNR. The reason lies in tetfat the number of
nonzero entries in the sparse ffagents of Gcosspike is much larger than those of the
other signals. More preferred solutions are necessargtmduish the nonzero entries
from zeros ones.

In general, a propes, is able to provide both the accuracy and tiigceency. If
Sy is too small, insfficient information decreases the quality of reconstructiom

the contrary, a larg8,, results in expensive computational cost and waste of ressur

caused by redundant information.

3.4.5 Results of locating the nonzero entries

Suppose there ake nonzero entries in the original signal or its transform doma&he
proportionpce; is defined ag.or = Kc/K, whereK. denotes the number of correctly

located entries. Largep.,, denotes higher accuracy of finding the nonzero entries.
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Figure 3.8: The effect o on measurement error (ME) wh&R= 0.35

And Kggtis equal to the size of active set, which should be very close WWe choose
Gausspike as the representative signal in this experinasnit, contains a moderate
number of nonzero entries with various magnitudes, ranfyorg 0.0376 to 2.1845.

In Fig. 3.10, the results gb.,, for Gausspike are presented, where it is indicated
that SPGL1 obtains the best performance in locating the eronentries, followed
by our proposed MOEA-PGRASP at the sampling rate of 0.2. MOEAPGRASP
outperforms the other methods when the sampling rate isl ég@35. For the con-
ventional greedy algorithm, such as OMP, since the selecti@ntry is vulnerable to
the noise, thus a low value @f, is obtained.

In Fig. 3.11, it is demonstrated that MOHEAPGRASP can also achieve the num-
ber of nonzero entries very close to that of the ground-t(@2). It can locate the
smallest number of nonzero entries but can cover a largesbp®f the nonzero en-

tries of the original signal.



3.4. EXPERIMENTAL STUDIES 70

40 0.35,NS=300 50
©0.35,NS=600 40 o

35 «0.35,NS=900 0.35,NS=300 o R
<0.35,NS=1200 30/00.35,NS=600

3
T  |-0.35,NS=900
 20/0.35,NS=1200

.....................
........

01 002 003 004 005 01 002 003 _ 004 005

standard deviation of noise standard deviation of noise
(a) Gausspike (b) Sgnspike
3 0.35,NS=300 >0
36\ [¢0.35,NS=600 S
“|~0.35,NS=900 & 40
935 +0.35,NS=1200 -
2 230 ]
0 34r 0 0.35,NS=300 P
20/ ©0.35,NS=600
33 ] ~0.35,NS=900
‘ ©0.35,NS=1200

01 002 003 _ 004 005 D01 002 003 _ 004 005
standard deviation of noise standard deviation of noise

(c) Gcosspike (d) Jitter

Figure 3.9: The effect dg on SNR whers R= 0.35

3.4.6 Experiment on randomly-generated signals

In the experiment, the number of nonzero entries in the nansignal is set to 30, 50
and 70. For each group, 15 signals are generated randomiyesdt the correspond-
ing parametersi(y) to (0.4,0.1), (0.3,0.1) and (025, 0.05), respectively. For each
signal, the average RE aihdnorm on 30 runs are obtained under noise with the stan-
dard deviation of 0.01. To illustrate the performances bthed algorithms, we present

the summation of rankings for each method in reconstructhgignals based on RE

_ _ 09
8 g «OMP
ol 4-BPDN = 4-BPDN
+SLO 0.84. 510
0SPGL1 0SPGL1
0.8|¥EN e 0.8{VEN
=M+GRASP - =M+GRASP -
075 «Proposed | | ) ) 075 «Proposed | | ) el
o1 0.02 0.03 0.04 0.05 “Bo1 0.02 0.03 0.0 0.05
Standard deviation of noise Standard deviation of noise
(a) sampling rate=0.2 (b) sampling rate =0.35

Figure 3.10: The correctly locating percentage of Gaussgtkr fairness comparison,
in the recovered signal, the entries with the largest 32 imadgs are selected amd
is counted among these 32 entries
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Figure 3.11: The number of nonzero entries found by diffeaégorithms. For BPDN,
SLO and SPGL1, if the magnitude of the entry is smaller th@3,0then the entry is
regarded as zero entry.

and sparsity, respectively. For RE, we define the method Wwélsmallest RE ranking
1st and so forth. Fdr norm, the method which gains the smallest sparsity ranks 1st
In Fig. 3.12 (a) and Fig. 3.12 (b), it is indicated that thegmsed MOEAD-PGRASP
has the highest ranking in RE while dealing with 15 randomagnFor the sparsity

in terms ofl; norm, our proposed method shows its superiority when thebeurof
nonzero entries is 30 and 50. But, Elastic-net (EN) outperéoour proposed method
when the nonzero entries in the signal is 70, which indicdiasEN is able to maintain

smaller sparsity when the number of nonzero entries istarge

150 150

100} 100t

rankings
rankings

o
S
o
=

0 50 . 0 50
The number of nonzero entries The number of nonzero entries

(a) RE (b) Iy norm

Figure 3.12: Comparison of the summation of rankings in rettacting 15 signals
for each method

3.4.7 Experimentin 2D case

One 2D signal from benchmark problems is tested, of whiclsiteis 64< 64 and the
representation basis is 2D haar Wavelet dictionary witrsthe of 4096x 4096.

To investigate the robustness oftdrent methods, the reconstructed results are
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compared in the presence of independent noise with stamgaidtion from 0.01 to
0.05 with interval of 0.01. In Fig. 3.13 (a), the resultd phorm whenSR= 0.3 are
presented.

It is indicated that EN, BPDN and MOER-PGRASP achieve very competitive
[; norm. However, MOEAD-PGRASP performs rather stable with the increase of
the noise level. Fig. 3.13 (b) demonstrates that MZIEEAest outperforms the other
methods in ME and MOEA-PGRASP is alsoféicient in minimizing the ME. In Fig.
3.13 (c) and Fig. 3.13 (d), on one hand, MOBAPGRASP can recover the signal
with the highest SNR and the lowest RE among all the methodgh®wther hand,
the performance is robust to the augment of noise level.

The original signal and the reconstructed signals undes#mepling rate of 0.2
are presented in Fig. 3.14. Due to the sensitivity of noise results of BP, SPGL1,
EN and SLO show significant block artifact nearby the boundeatween the black
and white components in the signal, which greatly degradessisual quality. The
OMP and M+GRASP result in some outliers in the reconstructed imagechwimay
be caused by the inaccurate estimation of the nonzero enMi@EAD-PGRASP can
obtain better visual results compared with the other methad the nonzero entries
can be precisely estimated by mining the solutions from M@EBRE. MOEA/D-
PGRASP is capable of achieving both good numerical and vigsalts in 2D signal

reconstruction.

3.4.8 Computational complexity analysis in reconstruction

MOEA/D is regarded as anfitine training process. Although evolutionary algorithm
increases the computational time, the solutions are stasettie database for reuse
once they are obtained. L8t denote the number of the elements in the initial active
set. Suppose no error for the estimation of sparsity, thebeurof iterations in the
reconstruction process of MOEB-PGRASP is equal td = K — S;, whereK is

the ground-truth sparsity of the signal. At each iteratiith M measurements and
the signal lengthN, the computational cost I©(MN). So the total complexity in
the reconstruction increases byimes,O(T MN). The greedy algorithm e.g. OMP, of

which the reconstruction complexity@T MN). The ratio between the computational
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Figure 3.13:L; norm, ME, RE and SNR comparison of different algorithms for 2D
signal

complexities of MOEAD-PGRASP and OMP is calculated by

O(TMN)  O(T)
O(KMN) ~ O(K)

In MOEA/D-PGRASP, sincdl < K, the computational complexity in phase 2 is
smaller than that of OMP. The computational time fdfetient algorithms is also com-
pared in Fig. 3.15, where the major computational cost cdnees Phase 1 and the
evolutionary manner consumes more time than the convaitrapthods. Although
better performances can be obtained, tfieiency of the algorithm is still an important

issue, which should be improved and carefully addressetkifuture.

3.5 Conclusion

In this paper, MOEAD-PGRASP is proposed to solve CS based signal reconstruction

problem, which benefits from three aspects described assll
Firstly, the statistical features of the samples are etéthand used for clustering,

which utilizes multiple competitive solutions from MOHA to generate one optimal
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Figure 3.14: Reconstructed results, sampling rate:0.2grlevel:0.005

solution instead of directly selecting one solution fromdd&ined by MOEAD. Sec-
ondly, HCCS based on clustering can automatically deternm@énitial active set of
the nonzero entries according to the extracted statideealires. The strategy is able
to reduce the computational complexity for the reconstongbrocess since the major-
ity of the nonzero entries have already been included inrthiali active set and only
a small number of nonzero entries are needed. At last, PGRA&Pporates AP of

each nonzero entry into the cost function. The probabiligvjgles a discriminative

Running time (s) for different CS recover methods
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Figure 3.15: Comparison of the computational time for défermethods
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feature to distinguish the nonzero entries from zero onesdayparison with the con-
ventional algorithms and MOEA methods, it is demonstraited MOEAD-PGRASP

can obtain better results in both SNR dpdorm.
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Chapter 4

Adaptive Patch-Based Sparsity
Estimation for Image via MOEA/D

4.1 Introduction

Sparse coding has gained increasing attention from rds&arm signal or image pro-
cessing community over the past decade. Suppos& ibat lengthN signal and it is
said to beK-sparse ifx can be well estimated by usiig < N codficients under a

dictionary shown in (4.1).

& = argmin||x — Dal3, st. [lallo < K (4.1)

a

whereD € RVM js the dictionary composed of the column-wise representdiasis,
a represents the sparse representation vectouoierD, K denotes the sparsity and
|| - |]o denotes thé norm.

A more familiar formulation for problem stated in (4.1) isreversely exchange

the positions of constraint and objective. Thus,

& = argminllallo, st. [[X — Dal2 < e (4.2)

«

wheree denotes the fitting error. The sparse representation modé11) or (4.2) has

been widely applied in image processing, such as image iagmdution [47, 92, 93],
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denoising [48] and compressed sensing [94] [27].

It has been proved that the problems stated in (4.1) and ée2enerally NP-
hard [95]. Greedy algorithms, such as matching pursuit (MR prthogonal matching
pursuit (OMP) [7] and its variants [8,9,45], work directly the mathematical sense of
lo norm. The greedy strategy iteratively constructs-germ sparse solution by select-
ing the active atoms (columns) out of a dictionary. The atdmtitvhas the maximum
correlation with the residual in the previous iterationdslad into the active atoms at
each iteration. Greedy algorithms succeed empiricallythadretically in many situ-
ations, which is able to provide fast and sparse solutiomsveyer, they only perform
well as long as the sparsity is accurately known as a priority. So it is desirable and
important to estimate the sparsity prior before applyingegly algorithms.

In [96], the sparsity is supposed to be related to the contglekthe image which
is statistically measured by the contained textures anthedsg. Based on the training
images, a linear relationship between the sparsity and ah®lexity is established
and proved to befective. In [97], a generalized greedy matching pursuit iaigm
is proposed to provide a compressive sensing reconstrutias can adaptively assign
different sparsity to dierent images, where the sparsity is determined collalvelsti
in a top-down and bottom-up way.

In many cases, it is flicult to estimate the sparsity of a natural image directly.
Unlike 1-D signals or some artificial images, a natural imageally contains lots
of different patterns which vary significantly acrosffetient regions. Besides, the
sparsity is also dependent upon the selected representstsis. For example, some
natural images are represented more sparsely under théetvlra@sform basis than
DCT transform basis. It is well known that natural images Uguzontain a lot of
repetitive patterns among the local patches. Compared hatlemtire image, the sta-
tistical analysis on local patches can provide a more roandtflexible model. The
redundant dictionaryl\ < M) trained from a group of sampled image patches provides
an adaptive and qualitative patch-based sparse repréeantBy adopting the same
dictionary, we can obtain the sparse representation fdr patch fairly.

To estimate the sparsity, it is important to obtain the spegpresentation vector. In

noisy environment, optimizing norm is more robust and stable thgmorm. In [98],
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a stable sparsity measure of normalizgshorm is used instead & and the lower
bound is theoretically analyzed. It is also suggested thatfeasible to estimate the
sparsity of the signal in a statistically data-driven wapiactice. However, solving the

[ norm programming usually costs expensively and resultsrgel number of nonzero
entries ina. Moreover, the solutions are also largely dependent onddelarization
parameter which controls the tradEbetween the sparse representation error and the
sparsity (the number of active atoms in dictionary). By chesdzing the traded
relationship, patch-based sparse coding can be regardednastiobjective problem
(MOP).

In this paper, we focus on the patch-based sparsity estimatian image and pro-
pose an adaptive sparsity estimation model which is contpotan dHine training
phase and online estimation phase. In tfigre training, at first, a scalable tree vocab-
ulary (SVT) is built based on clustering on the training patand each node in SVT
denotes one cluster center. Then, the sparse coding fotestatode is formulated as
a MOP, where minimizing the sparse representation errotl@dparsity (minimizing
[ norm of &) are conflicting with each other. To solve this problem, actegosi-
tion based multiobjective evolutionary algorithm (MOEAJOEA/D [99] is applied
to obtain a group of Pareto optimal solutions. Ant-#0-lo norm mapping function
is used to update the PF, based on which the knee region idetécused to locate
the sparsity range of the leaf node. In addition, after alldaf nodes are processed.
The obtained sparsity range is stored in a Look-up table (L.which can be reused
frequently. In the online estimation phase, if there comesi@y patch, its sparsity
range is set to that of the most similar node in SVT. And theesponding sparse rep-
resentation vector can be obtained by a sparsity-redrigteedy algorithm (SRGA).
By comparing with the state-of-the-art greedy algorithmthviixed sparsity and an
adaptive method proposed in [97], experimental studiesodstnate that our proposed
approach achieves better coding quality in terms of PSNRcaats less time.

The rest of the paper is organized as follows. Section 4t@duices basic concepts
of MOEA, followed by our proposed adaptive sparsity estioratodel in 4.3. The
experimental results are presented in Section 4.4 and tiedudbing remarks are given

in Section 4.5.
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4.2 Multiobjective evolutionary algorithms

Multiobjective optimization have been widely applied tabeith the problems in dif-
ferent real applications [100] [101]. Multiobjective eutibnary algorithms (MOEAS)
have shown their great abilities to solve MOPs. Currentbtelare three types of most-
researched MOEAs, the dominance-based, the indicatedlzasl the decomposition-
based methods. NSGA-II [68] is one of the representativeidante-based algo-
rithms, which applies fast sorting for the non-dominatelditsons based on a crowd-
ing distance. Later on, the crowding distance is improvefild2] and [103]. For
indicator-based methods, these methods search and $edetin-dominate solutions
by computing the defined indicator instead of ranking, suslnypervolume [104],
R2 [105] ande2 [106]. Decomposition based methods aim to apply decortiposi
techniques to convert a MOP into a group of single optimaratiubproblems. For ex-
ample, in MOEAD, all the subproblems are simultaneously optimized in aifaijon-
based way. At each generation, the population is made upedfebt solutions so far
for the subproblems. In the process of solving the subpnoebléwo subproblems in
the neighborhood, which is defined by the distances betwesndggregation coef-
ficients vectors, should have very similar optimal solusioifhe aggregation vectors
are usually generated by uniform sampling. In this paperapgly MOEAD, be-
cause both the objectives in our problem are convex and MOEWth weighted-sum

decomposition is very appropriate to deal with it as indédat [99].

4.3 The proposed model

4.3.1 Motivation and formulation

The greedy algorithm, such as MP or OMP can work well for spaggling in noiseless
environment. By setting a tolerance error, nonzerditments are obtained iteratively.
However, in the existence of noise, the sparsity is usuatyestimated correctly. The
greedy forward-based search is very sensitive to the noideae incorrect location
of nonzero entry fiects the results in upcoming iterations. As shown in Fig., 4.1

we choose three 8 8 patches from one image and sparsely represent them under an
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overcomplete dictionarp € Ré*®%0 phy OMP where a Gaussian noise- .4 (0, 8) is
added k denotes the sparsity in termslghorm obtained without noise akddenotes

the estimated sparsity whép = 0.01.
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Figure 4.1: The visualization of the sparse representagator.
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Figure 4.2: Offline adaptively sparsity estimation model

To solve this problem, we have mainly three consideratisrfsléows:

a. Itis well understood that more number of active atdénghe number of selected
representation basis) results in smaller coding errorh@rigepresentation accu-
racy). If more atoms are involved in the representationdib®onary can provide
a better representation and vice versa. Therefore, mimmthe sparsity and min-
imizing the representation error are trad&-d herefore, the sparse coding can be

formulated as a multi-objective problem (MOP).

b. Optimizingl, norm is more robust compared wignorm in the noisy environment.

So, we minimizd, norm instead ofy norm.

c. MOEAs can provide a group of good approximated Paretar@btsolutions for
MOP in one single run. The obtained solutions in the objectiemain can for-
mulate a PF (a curve for bi-objective problem). The propeftthe PF is usually

analyzed to make the problem well understood. As demoasstiat[12] and [13],
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the solutions on the knee region or the threshold point cacifgpthe sparsity of

the signal in compressed sensing recovery.

Therefore, a MOEA based sparsity estimation approach isgsex, which aims
to solve the MOP in (4.3).
min{ f1(c), f2(a)} (4.3)

wherefi(a) = |lall; and fo(a) = [IX — Dal|3.

4.3.2 The flowchart of the proposed adaptive sparsity estimation

model

Regarding that MOEAs are very time-consuming and resoumessive for the online
estimation, we use the MOEA and obtain the sparsity infime manner. To make
use of the generalization power dfime training, we propose an adaptive sparsity es-
timation model which integratedfitine training for a large group of sampled patches
and online estimation for query patches. The flowchart ofpsaposed model is pre-
sented in Fig. 4.2, which is composed of two major parts, tamihg phase (in the

dashed lines) and a sparsity determination phase.

4.3.3 Training phase

In the diline training phase, a certain number of isometric patchesaardomly ex-
tracted from a set of training images as samples. Then tla@spled patches are used
to construct a SVT. For each node of SVT, MOEA based sparstiynation is pro-
posed to estimate the sparsity, where MQBEAs applied to solve the MOP of sparse

coding. Then, the sparsity of each node is stored in a LUTdose.

Construct SVT

Since there are lots of sampled patches and it is ultimatgigrsive to apply the es-
timation patch by patch online. Considering that naturalgesaoften contains a lot

of repetitive patches in the local contents of image anddasethe assumption that
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under the same represented basis, similar patches haveiwalgr sparse represen-
tation and thus have the same sparsity, the intuitive agprsaperform clustering on

the patches, where the similar patches are in the same rcltgtas, the number of

sparsity estimations is reduced dramatically. For exantpkre are 50000 patches in
our training set and we group them into 50 clusters, theeafa only need to perform

the sparsity estimation for 50 patches (cluster centestad of 50000 patches. If
there is a query patch, of which the sparsity needs to be astdnwe search for its

most similar cluster center and then assign the estimatagdigpto this patch.

We intend to use the flat clustering for all the sampled imaagehes, however,
there is a problem that in some cluster, the number of pattest®o small to form the
reasonable cluster centroid. So, in this paper, we con#ii@ehnierarchical clustering.
Compared with the exhaustively linear search, SVT provid@exible and &icient
approach to search for the similar patches to the query p&®T employs a hier-
archical structure and each of its node is the cluster catitined by hierarchical
clustering shown in Fig. 4.3. There are two parameters usddfining the hierarchi-
cal quantization, the branch factd, and tree depthD. Initially, k-means is run on
all of the training data witlB cluster centers, after which the data is clustered Bito
groups. The quantization cells are further divided by reiwety applying the process
until D levels of the tree are obtained. Finally, the number of leafas is equal to the
number of classes divided for all the training patches. TV& &n be used to narrow

down the search to a small number offgtiently similar image patches.

Figure 4.3: Example for SVTR = 3 andD = 2)
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MOEA based sparsity estimation

To estimate the sparsity for each leaf node, we need to sbb/spgarse representa-
tion vector. One of the most widely-used MOEAs, MOBADE [107] (MOEAD in
differential evolution (DE) manner) is applied to solve the spaoding problem. To
find the true sparsity, the knee region is detected, wherelifextives of sparse cod-
ing solutions (sparse representation vectors) are bespresed. The sparsity of this
patch is set to the sparsity of the solutions in knee regidre éntire flow of MOEA

based sparsity estimation is presented in Algorithm 6. &p3t the detailed proce-

Algorithm 6: MOEA based sparsity estimation

Input:

D € R™*M: The overcomplete dictionary;

x € RN: Theith leaf node in SVT;

Output:

Sknee The sparsity of the query patch;
1fori=1,...,B°do
2 Solve sparse coding for theth leaf node Apply MOEA/D-DE to solve
(4.3) (wherex is replaced by!) and obtain the approximated PF
{F(ab),...,F(a~r)} and the approximated P = {al, ..., aNeer}.,
3 Map I; norm of PS solutions (f;) into Io norm and obtain a updated PF:
{F'(ab),...,F (aNwr)).
4 Delete the dominated points on the update PF and find the kneeegion
and the threshold point of the updated PF
5 Determine the patch sparsity,Sinee
6 end

dure of MOEAID-DE can refer to [107]. The weighted sum decomposition aagn

is adopted, where each subproblem is expressed as follows:
g¢°*(XIA") = Allelly + AraliXt — Daili3,r = 1, Npop (4.4)

whereN,, denotes the number of subproblems. It is noticed that thautar of the
subproblem in (4.4) has the same form with that of well-kn@inygle objective op-
timization problem in sparse coding. So, applying weighdiech decomposition can
be regarded as trying thefflirent Lagrangian (tradé® parameters for a single ob-
jective problem simultaneously. The cooperation amongetsibproblems takes the

advantage that the influence of tradle@lationship on the objectives of the obtained
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solutions can be well explored and some Pareto solutiortseimterested region can
also reflect the changing degree of traied-or example, the knee region is defined
as the part of PF in which the objectives of a Pareto solutamthe best compromise.
For a MOP with two objectives to be minimized, a little impeowent for one objective

would arouse a large deterioration in the other objective.

Algorithm 7: SRGA
Input:
D € R™M: The overcomplete dictionary;
Xq: The query patch;
Es The set of indexes for nonzero entriescgf'e®
E: The set of indexes for the selected atoms;
B: The set of indexes for all the atomsin
Output:
Sq: The sparsity of the query patch;
o The sparse representation vector for query patch.

1 Initialization:
21 =0;
3 Sq = LB;
4 To = Xq— D(:, Es)ake®
5 E=Eg
6 whilei <UB-LBdo
7 | Solvek* = argmaxD(;, k) ro;
kkeB-E
8 E = E U k*; Solve the sparse representation vector by the least square

method:

o | agq=D(E)D(E) 'D(E) X

10 Sq=LB+i;

11 if the coding error does not change in three consecutive i@nathen
12 | break;

13 end
14 i=i+1;
15 end

In Step 2, considering thal; norm of o tends to be a continuous function and
there are no significant fierences between those of the adjacent solutions, we map
thel; norm of the solution into itéy norm, which more straightforwardly denotes the

sparsity. The mapping function is defined in (4.5).

lglj( — exp(_ai/(gz); k=1---,M; j=1,---,Npop (4.5)

IFor the updated PFE' (o)) = {f;(c)), f,(a))}, j = 1.+ -+, Npop, Wheref, = f and f,(-) = | - llo.
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whereé denotes the sparsity control parameter abdenotes théth scalar variable
in jth Pareto solutiom. If e} is very small, it becomes a real number close to 1; if it
is a large number, then it turns to be zero. Then, we make teerii) as below.

1, ifa)>T;

B = | (4.6)
0, othemwise

The sparsity okx! in terms ofly norm is obtained by:

M
ledllo ~ M- > By (4.7)
k=1

By obtaining thd, norm of the solutions, we udgnorm instead of; norm to update
the original PF.
In Step 3, since itis very challenging to find the groundtextreme Pareto optimal

solutions in our problem, we use the method proposed in [Bibjdate the knee points.

S 1ciemMaxo, fi(al) - fi(al))
Sa<iemMaxo, fi(ad") — fi(ad))

plad, Sp) = minges, (4.8)
wherea!” denotes any solution &, excepia!, fi(al) corresponds to thieth objective
value of solutiona! andp(aj', Sp) denotes the least amount of improvement per unit
deterioration while replacing any other solution in PSdﬂ'{/. It is suggested that
solutions in knee region have the largest valup(@ii', Sp). So by setting a threshold
6, we can determine a limited number of knee points accorair{g.0).

Sinee= 10 Ip(a) . Sp) > 6.0l €Sy (4.9)

knee ™

whereS?

weedenotes the set of knee points with the threshold value

It is not unusual to see that there exists more than one kiggengeon the PF. In
sparse coding problem, representation error reflects thktyjthat the coded image
can achieve. Therefore, to maintain the sparse codingtgutile solution with the
smallestf, value in knee points, denoted by"¢is usually selected with priority.

Besides, the threshold point on PF in our problem is regardeitiea point after
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which all the solutions have little flerences in sparse coding error. This threshold can
help to determine the maximum number of representatiorshes#d without much
deterioration in coding quality. To find the threshold poine conduct two steps: at

first, search for a group of candidate poi6ts’ according to (4.10).
ST = (@lIfo(7) - fol@))l/ fa(a)) <€) (4.10)

where~y denotes the rightmost point on PF. Then, choose the thi@gbaita!” based
on (4.11).
o)’ = min{f, ()], a) € STF) (4.11)

In step 4,||a*"®9|, denotes the number of atoms which have dominant influence
of the coding quality; while the sparsity of threshold pailenotes the least number
of atoms used to perform a good representation for a noisyakigAccording to the
knowledge of transform domain threshold based denoisimigan signal can be ob-
tained by thresholding smaller déieients of representation. So for a clean patch,
the sparsitySynec lies between the lower bouridB = ||a™9|y and the upper bound

UB = lla![lo.

Sparsity LUT

After all the leaf nodes in SVT are processed, a group of ggarglues are gathered.
All the values are stored in a LUT which forms a mapping betwtbe node index and

the sparsity.

4.3.4 Online estimation for sparsity of query patch

The query patches are extracted from the test image. Foraasly patch, it will

go through the connected path containdgodes fromD levels in SVT from top to
down. In depth = 1, the most similar node with the query patcN@,, b=1--,B,

is selected at first. Then, for depth: 2, the most similar node is selected among the
nodes connected to the selected one in the previous Ievete:hlabyNL‘l. Then this

procedure is repeated recursively until the leaf nodeseaehed. The depth-based
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Figure 4.4: An example of sparsity LUT (9 leaf nodes wisth= 3 andD = 2: the
number in gray rectangle denotes the index of leaf node amadhtents in white
rectangle denotes the corresponding sparsity range apa#itens of nonzero entries
of akee)

search perform faster than the linearly exhaustive searang all leaf nodes. The
similarity is calculated based on the Euclidean distand¢eédxn the query patch and
the node in SVT and the index for the most similar node can Iteirdd, according to

which the sparsity range of the query patch can be found in.LUT

4.3.5 Sparsity-restricted greedy algorithm (SRGA)

By knowing the sparsity range and positions of nonzero enimi&nee points, we can
obtain the sparse representation vector for a query patétigoyithm 7.

In SRGA, the set of active atoms is initialized as the set ozeomentries in knee
point. The iteration times are also limited by the upper lwbuithus, SRGA only
needs to perform a small number of iterations to converge. |dWwer bound reduces
the number of iterations which accelerate the algorithmtaedupper bound helps to

maintain the sparse coding quality.
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4.4 Experimental results

4.4.1 Experimental setting

To evaluate thef@iciency and &ectiveness of our proposed method, experiments on
the benchmark datab&sare tested. Inffline training phase, we sét= 4 andD = 3

for SVT and 50000 sampled training patches with the size af@are randomly
extracted from database. The overcomplete dictiomary RE*®% is obtained by K-
singular value decomposition (KSVD) [108]. For MOHAAXDE, the size of population

is 1000, the chromosome length is set to 800, the number maitivas is 4000 and
the neighborhood size is 20. The setting of DE operators efar to [107]. In the
experiment, patch based sparse representation are ceddu@ivenD, the sparse
representation vector of a query patehjs obtained. The recovered image can be
achieved byDa. Then, coding quality is measured in PSNR between the aligin

image and the recovered image.

4.4.2 Sparsity range

To estimate the sparsity in noisy environment, we add ran@@ussian noise with
mean 0 and standard deviatior®8 to all the leaf nodes. The sparsity range for all
the leaf nodes can be obtained ilioe training phase. The graphical illustration of
sparsity estimation for the 2nd leaf node of SVT is presemdgig. 4.5, where the

upper limit is 53 and the lower limit is 29.

4.4.3 Compared with the state-of-the-art greedy algorithms

To better demonstrate thé&ectiveness of our proposed method, we compare the cod-
ing quality (representation error) in terms of PSNR and thdirgy time with conven-
tional greedy algorithms. For an image to be sparsely codedijrstly divide it into
non-overlapped patches. Then patch-based sparse codidgpted. The greedy algo-
rithms for comparison include: OMP with the maximum numbieiterations (OMP-

Max), OMP with the sparsity of threshold point (OMP-STP), BMith sparsity of

2sipi.usc.edu/database/database.php
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Figure 4.5: Graphical illustration for sparsity estimatiovhere the threshold point is
mark with black dashed square and the knee points are marked pval

knee point (OMP-SKP), subspace pursuit (SP) [109] and gpadaptive matching
pursuit (SAMP) [97]. We select seven 52812 representative images for testing. The
experiment on each image is repeated 10 times and the avauaggrical results are
presented in Table 4.1.

It can be observed from Table. 4.1 that in general, the pegbosethod outper-
forms the compared greedy algorithms both in coding quality dficiency. Our
method assigns flerent sparsities to flerent patches and for each patch, the sparsity
resulting in best coding quality is selected from the olsdisparsity range. Therefore,
competitive PSNR can be achieved compared with that of SAMRwalso selects
the sparsity adaptively. In addition, our method firstly Sralit the knee point where
an initial number of atoms that have dominant influence artegeized @line. There
is only a small number of atoms added into the group of reptatien basis. Thus, a
small number of iterations are desirable, which saves mush t

The average sparsity of each coding method is also compasdtiustrated in Fig.
4.6, the proposed method can achieve the second smallastamdong all the tested

methods. Although OMP-SKP use the smallest number of atorapdrsely code the
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image, the loss of coding quality is also significant. In $haur method can achieve a

competitive sparsity as well as the coding quality.

Average sparsity for different methods B 1.OMP-Max
l2.0MP-STP
[1]3.0MP-SKP
150 L l4.5P

l5.SAMP

>100 Il6.Proposed

@

S

Peppers
Lena

Figure 4.6: The sparsity comparison for different appreach

4.4.4 Sensitivity

No matter for the knee solution or the threshold point, thergjth of mappind, norm

to Lo norm is decided by the sparsity control parameieifhus, the sparse represen-
tation vector and the estimated sparsity of the query patay vary. To investigate
the dfect of§ on the sparsity of knee points, we perform one leaf node frdffi &d
perform MOEAD-DE to obtain the PF. By tuning the value &fthe corresponding
sparsity range is obtained. As shown in Fig. 4.7, both theeujyound and lower
bound tend to decrease with the augmeni.dBesides, the sparsity range also shrink
if the value ofs goes larger. The explanations are as follows: ig small, the number
of zeros in the sparse representation vector is quite siftalis, we have larger number
of nonzero elements and the valud@horm. On the contrary, whehis very large, a
dominant proportion of the elements are filtered as zero asrdal value ofily norm

is obtained.

To increase thefciency of our approach, it is expected that the range shaatld n
be too large. In addition, too small sparsity results in detation of coding quality.
So a moderaté such as 0.0025 or 0.003, is suggested to be used. Due to thépég
for the other nodes in SVT, the propgrs obtained by the empirical study introduced
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4.5 Conclusion

In this paper, we built anfiine training model for adaptively estimating the sparsity
of image patches by using MOEB. At first, a large number of training patches are
selected to construct the training set. Then, due to thelfiattdiferent patches may
have diferent sparsities under the same dictionary, a scalabledambdulary (SVT) is
built based on clustering on the training set and each no8&hdenotes one cluster
center. And MOEAD-DE is applied to estimate the sparsity of these clusteeatiets
sequentially. At last, these values of sparsity range aredtin a Look-up table (LUT).

If there comes a query patch, its sparsity range is set toofitae most similar node
in SVT. Comparing with some state-of-the-art greedy alpang with fixed sparsity
for all the patches and one adaptive method, it is demoestiat the experimental
results that our proposed method achieve better perforenbath in coding quality
and dficiency.

Although MOEASs can achieve competitive results comparet thie conventional
greedy algorithm empirically, our proposed method for siparestimation is also
largely dependent on the parameter setting. It is essaatgdlect and determine the
relevant parameters adaptively or in a more intelligent.wislpre importantly, it is
another issue to theoretically prove tHEeetiveness of this approach, which is the tar-

get of the future work. In addition, recently, some variasftMOEA/D are developed
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to improve the performance, such as MOQBAR [110] and stable matching based
MOEA/D [77] [111], which can also be tried and expected to haveebe#sults than
those of MOEAD-DE.
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Image Method PSNR/dB Time/s
Lena OMP-Max 30.79 23.94
OMP-STP 31.46 25.64
OMP-SKP 30.50 10.05
SP 31.50 17.64
SAMP 31.59 16.35
Proposed 31.70 8.35
Peppers OMP-Max 31.22 24.81
OMP-STP 29.62 24.17
OMP-SKP 30.68 11.02
SP 31.18 16.64
SAMP 31.36 15.21
Proposed 31.42 7.75
Girl OMP-Max 30.16 25.69
OMP-STP 30.09 24.49
OMP-SKP 31.87 11.26
SP 31.83 16.53
SAMP 32.14 16.13
Proposed 31.97 8.12
Boat OMP-Max 30.55 26.16
OMP-STP 32.21 24.67
OMP-SKP 30.93 10.96
SP 32.17 15.24
SAMP 32.26 16.13
Proposed 32.28 9.53
Baboon OMP-Max 30.86 24.78
OMP-STP 31.00 23.54
OMP-SKP 30.26 10.73
SP 31.14 16.32
SAMP 31.24 15.48
Proposed 31.40 7.69
splash OMP-Max 29.63 26.21
OMP-STP 31.57 24.16
OMP-SKP 30.31 10.34
SP 31.46 15.64
SAMP 31.64 16.13
Proposed 31.77 7.57
house OMP-Max 30.37 25.54
OMP-STP 29.45 25.06
OMP-SKP 30.43 10.22
SP 30.66 15.23
SAMP 30.57 15.71
Proposed 30.70 8.29

93

Table 4.1: Statistical results of PSNR and time cost foredéht approaches
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Chapter 5

Complexity Reduction in
Multi-dictionary based Single-Image
Superresolution Reconstruction via

Phase Congruency

5.1 Introduction

The single-image superresolution reconstruction (SISR$ &b recover the high-resolution
(HR) image from one unique of its corresponding low-resolu{iLR) images, which
is regarded as an ill-posed inverse problem. As the dedgoedape applied to the orig-
inal HR image is unknown, it is a challenge to obtain accuratenstruction of HR
image. Recently, the example-based methods become inmyapopular in SISR,
which is based on the assumption that the relationship leettree LR and HR images
can be built by learning from a group of image samples.

Due to the advantages of utilizing the redundancy and siityilaf the images,
the patch-based processing is naturally integrated irgoettample-based methods.
In [112], pairs of the LR and HR image patches are grouped rainihg dataset and
the relationship is investigated based on the assumptitocaf similarity among the

patches in both LR and HR images, which is largely dependenhe quality of the
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selected sample patches. A mofiagent and adaptive way is to use the sparse coding
methods in example-based SR. In [113], Yang proposed a spgrsesentation based
SR method, in which the HR and LR dictionaries are trainedftbe all the image
patches in LR and HR training dataset simultaneously. TrhgetadR patch and its
corresponding LR patch are assumed to share the same spamssantation and each
atom in the dictionaries is involved in representing thegmaatch adaptively. After
the LR patch is coded with the trained dictionary, the HR Ipatan be obtained by
the HR dictionary and coded sparse ffmgents. This method can achieve superior
performance to some conventional methods. Sparse repaéisarbased SR has also
presented in [114], where the single-image SR is formulaked problem of sparse
representation under the coupled dictionaries in two spéaee dictionary for HR
and one for LR). However, the reconstruction images are adgpadled by various
artifacts due to indticient representation by single dictionary. Asgfeient patches
have significantly dferent characteristics, one patch can be reconstructedinies
suficient related information is gathered as much as possible.

To overcome the shortage of single dictionary based SR, {diglionary based
SR is proposed and developed in recent years, which adopipfeydairs of dictionar-
ies to reconstruct each HR patch. Applying the multi-dicéicy technique in SR has
shown its advantages in reconstructing various types ofj@sasuch as natural im-
age [47] [92], remote sensing [115], textual image [116] dadth image [117]. The
major steps of these methods are described as follows: Atthis training samples
of LR and HR patches are divided into certain number of graither by supervised
or unsupervised learning method. Secondly, the trainiggradhm is applied to each
group of LR and HR samples to obtain the specific coupledahaeties, simultane-
ously. Then, the LR patch is sparsely represented by thasgeld LR dictionaries,
respectively and its corresponding HR patches with redpeditferent HR dictionar-
ies are obtained. At last, the final reconstructed HR patdfiained by aggregating
these HR patches with the weighting average or other sefet#éichniques. Com-
pared with single-dictionary based SR method, the muttiiginary can achieve better

reconstruction results. However, it is obvious that midtigictionaries bring huge
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computational burden in the reconstruction process fdn @atch, which is often un-
expected in electronic devises or imaging systems. Thexgitds necessary to reduce
the computational cost in the multi-dictionary framewarlathieve a fast and accurate
reconstruction.

Phase congruency (PC) [118] is an energy-based feature vgratie to reflect the
importance of the contents in the image in terms of PC map.Pealue of the pixel
lies between 0 and 1, where larger PC value denotes the gixefarmative which
should be considered more important. In this paper, firate/divide the patches in
LR image into two categories by thresholding the PC value,ittportant ones and
non-important ones. Then, for the important patches, wéyapp multi-dictionary
based reconstruction to obtain the HR patches, where thgpheudlictionaries are
trained from diferent groups of clustered samples; meanwhile for the nqgoitant
ones, the single-dictionary which is trained from all thenpées in dataset is applied to
reconstruct the HR patches. At last, all the image patcleaggregated by averaging
the intersection of two adjacent patches with overlaps. &tperimental simulations
on the benchmark images show that the proposed method ceveclompetitive re-
construction quality without much degradation comparetth wiat of multi-dictionary
based SR and save much time in reconstruction process.

The rest of the chapter is organized as follows. Sectionrir@duces the frame-
work of SISR based on multiple dictionaries and followed g proposed method of
complexity reduction based on PC. The experimental restdtpr@sented in Section

5.4 and the concluding remarks are given in Section 5.5.

5.2 SISR based on multiple dictionaries

SISR aims to reconstruct the high resolution image fromntsgpecific low resolution

(LR) image and the problem can be expressed as

Y =HX +n (5.1)
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whereY is low resolution (LR) image is the unknown degradation matriX,repre-
sents the original HR image amddenotes the independent noise.

In the framework of sparse representation based supeutEsoreconstruction,
the coupled dictionarieBy, and D, are trained from the sampled HR patchgsand
sampled LR patcheX, simultaneously under the condition that each pair of HRpatc
and LR patch share the same sparse representation. Thespairge representation

problem can be expressed as

{Ds, a} = argmin||Xs — Dsall2 + Allally (5.2)

Ds,a

wherea is the sparse cdicient vectorDs denotes the joint dictionary, is the regu-
larization parameter and
1 1
Xe=| W | Ds=| W
x| &
whereM andN denote the length of the vectorized LR and HR image patches.
Considering reconstructing each HR patch by multiple dnarges, the training
samples of LR patches and HR patches are divided khigroups by clustering or
classification based on some rules. For the simplicity, we the clustering method
in [47] as an example. Then the divided training samples iwbansist of both LR and
HR patches are obtaing®}, X'}, {X2, X2}, ..., {XX, X} andK cluster centers of LR
patchesC,,C,,...,Ck are obtained. Then the joint sparse learning process in .2
applied to each group of the training samples. Thus, theipheitoupled dictionaries
{D},D}}, {D3,D?}, .. .,{DK, DF} are obtained.
The sparse representation of LR pat¢htin Y under thekth dictionaryDK, k =

1,...,K is obtained by solving the optimization problem in (5.3).

ax = argmin|]Y — Dfayl[2 + Allally (5.3)

a

The corresponding HR image patch is obtainedy= Dfay. The reconstructed
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HR patchX can expressed by the weighting average of the patghes

K
X= Z a)ka (54)
k=1

where the weights) is determined by

Y — Cyll3
Wy = w (5.5)

K
> Y = Cull3
k=1

After all the HR patches are reconstructed, the overlappgibns of the adjacent
patches are averaged to reduce the block artifact of thedraagd the reconstructed
HR imageX is finally obtained. The procedure of multi-dictionary bR is pre-
sented in Algorithm 8.

Algorithm 8: Multi-dictionary based SR
Input:
The LR imageyY;
The trained multiple coupled dictionaries:
{D},D}}, {D3,D?}, ..., {DK, DF}
Output:
The HR imageX;
1: for Y e Y do
2:  Calculate the sparse representatiQrof X underD¥, k = 1,2, ..., K by (5.3);
3:  The corresponding HR patch is obtainedXyy= D,kak;
4:  The reconstructed HR patch is updated by (5.4);
5
6

: end for
: Averaging the overlapped region to obtain the final HR im&ge

5.3 Complexity reduction based on PC

5.3.1 Phase congruency

Phase congruency (PC) is regarded as a dimensionless mebsigraficant structures
in the image, such as the lines, singularities, texturescanaers. The most important

advantage is that PC is invariant to the illumination andtiast and PC at point is
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calculated as follows.
[E(X)|

2nAn(X)

where|E(X)| denotes the local energy arg(x) represents the magnitude of thtn

PC(x) = (5.6)

Fournier component.
To compute the local enerdl(x)| and the magnitude of scateA,(x), according
to [118], the 2D log-Gabor function in (5.7) in used to comelith the original 2D

image.

G(w, Om) = exp( _ (|Og(a)/wo))2 B 6 - gm)Z)

202 202 ®.7)
wherewy is the center frequency of the filter, denotes the control parameter for filter
bandwidthg,, = mm/M,m=0,1,..., M — 1 is the direction of the filtei\ is the total
number of the directions ang, controls the angle range that the filter can reach.
The response at the pointof the scalen includes two counterparts the even-
symmetric filtering resuk, 4, (X) and odd-symmetric filtering resuwdf, 4 _(X). The mag-

nitude ofx on the scale and the orientatiofi,, can be obtained by

Poin(@) = /(€0 (9)2 + (On,(0)? (5.8)

Therefore, the local energy in the directiondgfcan be computed as follows.

£ (4) = \/(Z nin(9)7 + (3 Ons ()2 (5.9

Considering the orientation information in image, substit{s.8) and (5.9) into (5.6)

and PC is obtained by
Zm Egm(X)
Zn Z] An,Hm(X)

PC(x) is a real value between 0 and 1 and higher PC indicates thgbike! is

PC(X) = (5.10)

highly informative and belongs to the significant structurethe image.
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5.3.2 Complexity reduction in multi-dictionary SR via Phase Con-

gruency

Phase congruency is a good indicator to judge the signifecahthe pixels in certain
structure, so we use the PC value to classify the pixels mbocategories: important
and unimportant ones. The Wellner’s adaptive threshol@][Which is based on the
local means of the PC value is applied to distinguish the mance of the pixels. For

LR imageY, the threshold matriX is determined by
T = PC(Y) = Gaux (1 - p/100) (5.11)

u2+u2 R .
wherePC(Y) denotes the PC map 8f, Gaulu,v) = \/ﬁe‘? is the Gaussian low-

pass filterp- is standard deviation of the Gaussian smoothing)] [determines the size

of the filter andp € [-20, 20] is an integer which controls the threshold.
The PC map is transformed into the binary n@,(y) by the pixel-wise com-
parison with the thresholdl(y), whereT(y) denotes the threshold for the pixgin

Y.

1, PCly)>T(),yeY;
PCy(y) = (.12)
0, PCy)<T(y),yeY

In multi-dictionary SR, the LR image is separated into oygokedb x b patches
and the corresponding HR image is reconstructed patch lay path overlap. So, it
is necessary to evaluate the importance of each LR patchordiog to the binary PC
map, we dividePCy(Y) in the same way as the LR image. Thus, the pat&t&gy) of
PG, are obtained. Then the number of the nonzero pi&gle each patch is calculated
which is regarded as a voting progress. The patch@ith- [b?/2] is considered as an
important patch, otherwise it is not important. The patchl@ation process is shown
in Fig. 5.1.

Therefore, we integrate this evaluation process into ralittionary SR framework
to reduce the computational burden in the reconstructioogss. The flow chart of our
proposed multi-dictionary based SR is presented in Fig. Bt#& patch evaluation is
conducted in the PC space. For the unimportant patchessmgle dictionary is used

to reconstruct the HR image.
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Figure 5.1: Patch evaluation process based on binary PC map
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Figure 5.2: The procedure of the proposed multi-dictiorayed SR

A

5.4 Experimental results

5.4.1 Experimental settings

To evaluate the performance of our proposed dictionaryd&semethod, the results
of bicubic interpolation, single dictionary based SR [1a8H multi-dictionary based
SR [47] are compared in several numerical metrics incluéiagk signal-to-noise ra-
tio(PSNR), SSIM [52], MSSIM [120], time cost of reconstruetiand operation saving
(OS). OS is defined as the relative reduction of the operdtruitiply and plus) times

on each patch.
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T —Tal
OSmuIti = —m-l-r% m
T TY

p

whereT,, and T, are the multiplying an plus operation times on each patapeae-
tively. TO, andTg are the operation times of the referenced method. Largaev#dlOS
indicates that the computational complexity is reducedensggnificantly.

In the experiment, the LR patch is33 with 1 overlapped pixel and the zooming
factor is 3. The training set is composed of 50000 pairs of HR laR patches ran-
domly extracted from the dataset. The clustering is appbedivide the LR and HR
samples intd< groups to trairk coupled dictionaries. The global coupled dictionaries
D, andDy, are trained from the whole training set. For fairness compar the training
algorithm is K-singular value decomposition(KSVD) [12hidathe number of clusters
is K = 5. Two 510x 510 images are tested on Matlab 2013a and the numericat resul

is the average of 10 runs.

5.4.2 Numerical and visual results

The statistical results are shown in Table. 5.1, in which R&#B), SSIM and MSSIM
are compared. It is noticed that our method outperforms thebix and single-
dictionary based method and achieves more or less the sauksras that of the
multi-dictionary based SR.

In Table. 5.2, the CPU time cost in the reconstruction proeessthe operation
times (multiply and plus) compared with the multiple-dictary based method are
given. Itis indicated that our proposed method can sigmflgaeduce the reconstruc-

tion time in multi-dictionary based SR framework, andT, are computed as follows:

For each patch in multi-dictionary based reconstructiba,glus operation which
comes from the weighting average is equakte 1 and the multiply operation is equal
to K asK dictionaries are involved. However, in our proposed metiiogre aréNiq

patches andh(m < Noa) iImportant patches which usé coupled dictionaries. So the
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(d) Single-dictionary (e) Multi-dictionary (f) Lena obtained by our pro-
posed method

Figure 5.3: Comparison of the results: Lena

averaging plus operation for each patch is calculated by

m(K -1
Ty = (Nora + 1 (K = )Nt = 1+ 00— (519
total
and the averaging multiply operatidi, is
K-1
Tm = ((Ntotar — M) X 1+ mxX K)/Niotal = 1 + m ) (5.15)

Niotal
In the results of Table. 5. = 5, N = 7056 andm is equal to 4100 and 5017
respectivelymis determined by the proposed patch evaluation procedueainh 20
and the size of Gaussian lowpass filter is equal to 2508, = 17.5% andOS;ys =
34% for Lena is obtained ar@S,,i = 5% andOS,;s = 24% for Peppers. The results
indicate that our proposed method can reduce the compughttomplexity to some
extent and save the resource cost in reconstruction.

The visual comparison of the SR methods are shown in Fig. rid3&g. 5.4. It

is demonstrated that our proposed method is able to ger#eater HR image while
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(d) Single-dictionary (e) Multi-dictionary (f) Peppers obtained by our
proposed method

Figure 5.4: Comparison of the results: Peppers

preserving sharp edge than Bicubic interpolation and sidgionary based method.

Besides, it can obtain competitive result with that of mdititionary based method.

5.5 Conclusion

In this chapter, we proposed a complexity reduction methadulti-dictionary based
SR via phase PC. The PC map of LR image is extracted and bidaozgistinguish
the importance of the image patches. Then the importanhpatare reconstructed by
multi-dictionary based SR method and the unimportant matdly single-dictionary
based SR. The final reconstructed result is obtained by angrtige overlapped region
between the adjacent patches. Experimental studies démraienghat the proposed
method can not only achieve competitive results comparddmlti-dictionary based
SR method, but also save much time and reduce the compwthtiomplexity in the

reconstruction process.



5.5. CONCLUSION 105

Images Methods PSNR(dB) SSIM MSSIM
Lena Bicubic 30.79 0.9880 0.8371
Single [113] 31.72 0.9904 0.8442
Multi-dictionary [47] 32.22 0.99150.8486
Proposed 32.20 0.9916.8486

Peppers Bicubic 29.38 0.9868 0.8250
Single [113] 30.09 0.9890 0.8310
Multi-dictionary [47] 30.25 0.9893 0.8322
Proposed 30.25 0.9893 0.8325

Baboon Bicubic 23.18 0.8662 0.6901
Single [113] 23.31 0.9051 0.7031
Multi-dictionary [47] 23.53 0.9223 0.7114

Proposed 2351 0.9223 0.7112

Barbara Bicubic 26.21 0.9715 0.7962
Single [113] 26.42 0.9821 0.8432
Multi-dictionary [47] 26.64 0.9872 0.8446

Proposed 26.62 0.9820 0.8444

Bridge Bicubic 24.38 0.9671 0.8560
Single [113] 24.72 0.9745 0.8685
Multi-dictionary [47] 24.84 0.9803 0.8732

Proposed 24.82 0.9802 0.8730

Table 5.1: Statistical results of PSNR, SSIM and MSSIM.

Images Methods time cost(sJm Tp
Lena Multi-dictionary [47]  405.54 5 4
Proposed 265.30 3.3 3.3
Peppers Multi-dictionary [47]  392.17 5 4
Proposed 297.20 3.8 3.8
Baboon Multi-dictionary [47]  388.25 5 4
Proposed 21343 3.0 3.0
Barbara Multi-dictionary [47]  395.17 5 4
Proposed 246.23 3.3 3.3
Bridge Multi-dictionary [47] 401.64 5 4
Proposed 221.67 3.1 3.1

Table 5.2: Comparison of the CPU time and operation times om jgatch



106

Chapter 6

A Phase Congruency based Patch
Evaluator for Complexity Reduction
In Multi-dictionary based

Single-image Super-resolution

6.1 Introduction

Inrecent years, the demand for high-resolution (HR) imagesptes the development
of super-resolution techniques in multimedia-relatedifglL22] [123]. Single-image
super-resolution (SISR) applies signal processing tectasiqo recover HR images
from one of its degraded low-resolution (LR) images. To tadkle ill-posed inverse
problem, three categories of methods, including intetmmamethods, regularization
methods and example-based methods, are well developed.nA\them, example-
based methods have shown its superiority in obtaining a-giglity scaled-up image
[22] [114] [18] by learning the relationship between LR an inages from a given
set of image samples.

In example-based methods, patch-based processing isyuapplied to utilize the
redundancy and similarity among images adequately. Ftardnt image patches, dic-

tionary learning (DL) based sparse coding approach prevadglobal and adaptive
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representation, which has been used in various applicaterny. image segmenta-
tion [17], medical diagnosis [124], 3D shape estimation5jl&nd signal reconstruc-
tion [126] [66]. SISR methods based on DL were proposed i8]127] and [128],
where SISR was formulated as a problem of sparse coding @ansiagle pair of dic-
tionaries in two spaces (one dictionary for HR and one for R target HR patch
and its corresponding LR patch were assumed to share thesgarse representation
under two-coupled LR and HR dictionaries. Therefore, dfferpatch was sparsely
represented by LR dictionary, the corresponding HR patcldcbe obtained by HR
dictionary and the sparse d&eients.

It is often the case that an image patch may contain the pisais different struc-
tures, such as line segments, textures, abundant edgegrgosmooth regions or
the combination of these structures. Although some regaléon terms are added
into SISR model to enhance the sparse representation tigpab[129] [130], it is
still insufficient and inaccurate to use one single dictionary to sparseresent the
LR patches [47]. To overcome the shortage, multi-dictigrizased SISR (MDSISR)
which adopts multiple pairs of dictionaries to reconstm HR patch is proposed for
various types of images, such as natural image [92] [13@]pte sensing image [115],
textual image [116] and depth image [117]. However, mudtihictionaries usually re-
sult in huge computational burdens in the reconstructioesgss, which is not expected
in electronic devices or imaging systems. In addition, fane patches that belong to
a single structure, such as textures, over-smoothness eagused by using multi-
ple dictionaries, which even degrades the reconstructiity. In fact, due to the
redundancy of dictionary atoms and compactness of spgysesentation [121] [132],
a single dictionary performs rather competitively in restoacting the patches with a
single type of structure. Therefore, to reduce the comurtak cost and maintain the
reconstruction quality simultaneously, it is desirabletaptively reconstruct the LR
patches based on the complexity of structures they contain.

To measure the complexity of the structures, it is usefuktcaet certain features.
Phase congruency (PC), a local energy based indicator, v@gro be &ective in

distinguishing the informative structures, such as lirgnsents, singularities, textures,
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edges and corners from smooth regions [118] [133]. Receexlyloiting PC fea-
tures has shown its great potential in image or video pravgsgpplications, such as
verification and identification [134], image registratidi85] and foreground extrac-
tion [136]. However, it is diicult to measure the complexity of the patches directly
based on PC values as one patch may consist of the pixels fidtipi® informative
structures mentioned above.

In this paper, a PC based patch evaluator (PCPE) is propos&ksify the patches
into three categories: significant, less-significant andatimpatches. The significant
patch contains the pixels from more than one types of inftiu@atructures, the less-
significant patch consists of only one single informativaaure and the smooth patch
contains the smooth region. fierent from using binary PC map in [93], PCPE em-
ploys a hierarchical structure, where the first level digidiee patches into smooth
patches and non-smooth patches and in the second leveératgsis applied to parti-
tion the non-smooth patches into the significant patchedesmsdsignificant patches.

We integrate PCPE into the conventional framework of MDSIS#. dignificant
LR patches, multiple dictionaries are applied to recomsttive HR patches to main-
tain high reconstruction accuracy. While for the less-digant ones, the faster ap-
proach, single dictionary is used to recover the corresipgndR patches morefie-
ciently without much deterioration in quality. In additidsicubic interpolation, which
performs fast andfgective in scaling up the smooth region of the images is a@plie
to restore the HR patch of a smooth LR patch. Experimentalietuon the bench-
mark database demonstrate that our proposed PCPE-MDSISRcb&ve compet-
itive reconstruction quality without much deterioratioongpared with conventional
MDSISR and save much time in reconstruction process. Rétlg, by using Zeyde’s
method [127] as a baseline, PCPE-MDSISR also outperforme state-of-the-art
SISR methods in PSNR, SSIM and FSIM.

The rest of this chapter is organized as follows. Sectiorirraduces the related
works and the background followed by our proposed PCPE-MRBSiSSection 6.2.
The experimental studies are given in Section 6.3. And tinelosion is finally made

in Section 6.4.
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6.2 The Proposed PCPE-MDSISR

6.2.1 Motivation of using PC map and binary PC map

Figure 6.1: The test images (the first row), correspondingr2@s (the second row)
and gradient maps (the last row)

From Fig. 6.1, the dierences between PC feature and gradient feature lies m thre
aspects: at first, PC can be used to detect more than one tgpeictures in an image
at one time; secondly, PC is invariant to the illumination @ontrast of the images
which is more robust to identify the informative pixels; ast, PC can recognize not
only the isolated structures, such as the edge and corn@isoithe pixels surrounding
them, which makes it very suitable for patch-based operatio

In Fig. 6.2, it is noticed that the occurrences of PC valuegnnmage follows a
power-law distribution. There is a large number of pixeload PC values are close to
zero but only a few number of pixels have very large PC valugw( the interval of
the x-axis is approaching to infinitesimal). Such a distidouof PC values is helpful to
distinguish the pixels. The pixels in the informative stures, such as line segments,
singularities, textures, edges, and corners have largeraR@s; while for the pixels
in smooth region, PC values of these pixels are very smallcoAting to [118], a
threshold of B — 0.4 is usually applied.

In MDSISR, LR image is partitioned into overlapped isomep&tches. A patch
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Figure 6.2: The distribution of PC values in images. Hiséogs of the distribution of
pixels in PC maps, where the width of each pin is equal®d QOnly two images are
presented here, because the distribution in other imagesugte similar).

often contains pixels from more than one structures. Thandtiveness of the pixels
across dierent structures may vary dramatically, which brings thgadilty in evalu-
ating the patches.

In [137] and [138], the average value of PC is deployed as drnleeoperceptual
features for image quality assessment, which reflects thetsatal significance of the
image. As shown in Fig. 6.3, the average PC value for eacthpattR image is
computed, and the corresponding histogram is obtaineds dbserved that a large
proportion of the patches in an image have the average PE€ salaller than 0.3. It is
likely that some patches with filerent patterns share the same average PC value. For
example, in Fig. 6.4, patch A and patch C have the same aveshge, 0.45, but they
belong to diferent structures in original LR image. So, the standardadiewi of PC
values in each patcl, should be considered, where a largéndicates that the patch
contains pixels from more than one structures; a smallemoe@ns that the patch is
composed of a single structure.

Therefore, the significant value (SV) for tita patch is defined in (6.1).

Hi
S\ = 6.1
I 5i + & ( )

wherey; andés; denote the mean value and standard deviation of all the R@wvah
theith patch of PC map, respectiveb.is a relatively small positive constant.

We use four patterns to represent the patches in PC map. laj laigd highs; b)
high u but low ¢; c) low u but highé; d) low u and lowé. Suppose the patches have
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high i (containing the pixels from informative structures), wdh&arger value denotes
the patch contains the pixels from one single informativecstire, and smaller value
means the patch has more than one informative structures.

But (6.1) does not always work unless we can firstly identifg thsignificant
(smooth) patches. For instance, in Fig. @din patch B (an insignificant patch) is
very close to zero or very small. Although is small, patch B may have compara-
ble SV with patch A or patch C. So, it is not trivial to directly decitlee boundary
between patch B and patch A or patch C by (6.1). To identifyitisgynificant (or
smooth) patch, we use a binary PC map suggested in [139]nBtamnice, in Fig. 6.4,
the corresponding patch A, B, C and D in the binary PC map argepted, where
patch B (a smooth patch in LR image) and patch D significantigdfrom patch A or
C in the number of white pixels. To better categorize patcmé patch C, we need to
remove the interference of insignificant (smooth) patches sis patch B (pattern d)

and patch D (pattern c).

2000,
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Figure 6.3: The distribution of the average PC value in atpatc

6.2.2 Patch evaluation based on PC map

Based on the complexity of the contents that a patch contaaslivide the patches
into three categories: significant, less-significant arsgimificant (smooth). The sig-
nificant patch consists of the pixels from more than one m#ftive structures. The
less-significant patch contains the pixels from one singlermative structure. And
the smooth patch is made up of non-informative pixels messhy PC.

The patch evaluation process is shown in Fig. 6.4, where atehpmarked with
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red square denotes the significant patch (e.g patch C), tlee gmee represents less-
significant patch (e.g. patch A) and the blue one stands ésitiooth patch (e.g. patch
B).

Figure 6.4: Procedure of PC map based patch evaluation

In step 1, a PC map of LR imagé PC(Y), is obtained.

In step 2, based on the PC map, the pixel¥ itan be classified into two categories.
One belongs to the informative structures; the other isughetl in smooth region. This
allows one to specify a threshold to distinguish the pix8ather than setting a fixed
threshold, an adaptive threshold [119] based on the locahmef pixels is applied,

where the threshold matrik is determined by

T = PC(Y) * Gau(f, o) x (1 - t/100) (6.2)

whereGau f, o) denotes the Gaussian lowpass filter to calculate the loeahrof the
PC values,f is the number of pixels around the centered pixel used to ctenjine
local meansy is the smoothing parameter ahd [—20, 20] is an integer that controls
the range of thresholdPC(Y) is transformed into the binary PC m&&,(Y) by the
pixel-wise comparison with the thresholiy), according to (6.3), wherg(y) denotes
the threshold for the pixelin PC(Y). In PCy(Y), PCy(y) = 1 indicates that the pixel

is in the informative structure of the image, otherwise ibbgs to the smooth region.

1, PCy)=T(y).yeY;
PCo(y) = (6.3)
0, PCly)<T().yeY
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In step 3, according to the PC map and the binary PC map, signifi less-
significant and smooth patches are obtained. The detaileckgure for step 3 is

illustrated in Fig. 6.5.
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i tract t Clustering
Binary extract, Target | coun Number of > -
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B
position significant

extract) - Corresponding
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Figure 6.5: Patch evaluation based on PC map

The patches are extracted in a raster scan way (from upelefown-right). In
Fig. 6.5, the number of the nonzero pixeléZ, in theith patch of binary PC map
is calculated. Then, a hierarchical clustering is used tugrthe patches into three
categories. At the first layer, k-means clustering is apigieeN Z;s and the patch with
higherNZ belongs to non-smooth patches while the patch with smidleis regarded
as a smooth patch which is mainly composed of non-inforragtixels. The advantage
of clustering lies in the fact that it can automatically detme the boundary between
two groups according to the distribution of the d&tZ. Before the clustering\z is
normalized by

_Nz

NZ = o (6.4)

At the second layer, the non-smooth patches in PC map aracédr From (6.1), it
is indicated that the patch with larg8nN/ contains one single informative structure as
the standard deviation is small, which is regarded as adiggsficant patch. ISV is
smaller, the patch should contain more than one informatiwetures, as the standard
deviation is larger compared with the single structure.nlthiee patch is a significant
patch. To obtain the less-significant patch and significafitlp k-means clustering is
applied toS Vs.

It is noticed that in the first layer, the number of pixels usedalculate the local
means are usually larger than the number of pixels in a paichother words, the
pixels in the adjacent patches are also involved in obtgithie binary PC map. In the
second layer, only the PC values in a patch are considereahpute SV. Therefore,

in the hierarchical clustering method, both the inter-patod intra-patch information
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are utilized to partition the patches in an unsupervisednaan

6.2.3 The framework of PCPE-MDSISR

The PC map based patch evaluation process (PCPE) is intdgnabethe MDSISR
framework. The flow chart of our proposed PCPE-MDSISR is preeskin Fig. 6.6.

The patch evaluation is conducted in the PC space. For tindfisant patches,
to maintain the recover precision, it is necessary to applitiple dictionaries, each
of which is trained from respective cluster of patches wit similar structures. For
the less-significant ones, the global dictionary (whiclrasnied from all the sampled
patches) is applied to reconstruct the HR image, providiagter reconstruction com-
pared with the conventional MDSISR. In addition, bicubicenpolation (BI) is ap-
plied to achieve anf&cient reconstruction for the whole image, where the HR simoot
patches are directly preserved in the reconstructed HRemagcause interpolation-
based methods have been proved to be véigient in dealing with the smooth region
in SISR. In this paper, we apply Zeyde’s implementation [125]a baseline for DL
based SISIR. For MDSISR, Zeyde’s method are also extended lipladictionaries
in the way described in Section 5.2. The detailed procedUPESE-MDSISR is given
in Algorithm 9.

e . ™
L Input Lf( image )

v v
Bicubi .
. 1cub19 Patch evaluation
interpolation
I
v v
. Less
v Significant significant
Smooth l l
Multiple Single
dictionaries dictionary
l HR patch
» Patch aggregation
HR patch gf g HR patch

‘\ Output HR image :‘

Figure 6.6: The procedure of the porposed PCPE-MDSISR
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Algorithm 9: PCPE-MDSISR
Input:
The LR imagey;
The trained multiple coupled dictionaries:
{D}, D}, {D2, D7}, ..., {Df, Df}
The trained global coupled dictionarig$), D/}
Output: A
The reconstructed HR imagk;

1: PC based patch evaluation for all the patche¥ in
2: Apply bicubic interpolation to LR image and obtain initigloonstructed image
Xo;
3: for yj e Ydo
4:  if Y is a smooth patcthen
5: X(i) = Xofi);
6. elseifY; is a significant patcthen
7 Compute the sparse representaﬁbnfyi underD:‘, k=12,...,Kby(5.3),
respectively;
8: The corresponding HR patch is obtainedxy="D}§;
9 Theith reconstructed HR patch iS aggregated by (5.4);
10: else
11: Compute the sparse representatpofy; under the global dictionar by
(5.3);
12: Theith reconstructed HR patoh = D} §/;
13:  endif
14: end for

15: Average the overlapped region to get the final HR imﬁge

6.2.4 Computational cost reduction in PCPE-MDSISR

For each patch in MDSISR, the plus operation which comes flramwieighting aver-
age ofK components is equal & — 1 and the multiply operation is equal ko The
average multiply times for each patchy,, and the average plus timeg;, in PCPE-
MDSISR are computed as follows:

mp + Kmy

Tm = (mp x 1+ m X K)/Netal = TN (6.5)
total

m(K - 1)

Tp= (Mg x (K = 1))/Neotal = N
total

(6.6)
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where there ar®\y, patches in totalim, significant patches which ug€ coupled
dictionaries)m, less-significant patches ang smooth patches witNio = My + My +
ms. The bicubic interpolation runs very fast to obtain the vehBIR image which is
less than one second. So, the operation on smooth patché® égnored compared
with the dictionary based methods.

In (6.5), whenK > 1,m;,m,,mg > 0, we can come up with the inequalities as

follows:
m, + Kml < K(ml + m2) < KNtotal —
Ntotal Ntotal Ntotal

And in (6.6), itis obvious thafi“-2 < K —1, which indicates that in PCPE-MDSISR,

K (6.7)

the multiply times and plus times for each patch is smallentMDSISR.

Although patch-wise operation is applied in MDSISR, it isoalecessary to in-
vestigate the operation saving for each pixel as bicubarpaiation is conducted in a
pixel-wise way. To generate each pixel in HR patch for a $igat patch, it requires
L multiply andL — 1 plus operation for each dictionary, whdrelenotes the number
of atoms in a dictionary. FAK dictionaries, we neel L multiply andK(L — 1) plus
operations, respectively. Besides, in the process of logl weighted average of
K components reconstructed Bycoupled dictionaries, addition& — 1 plus opera-
tion andK multiply operation are needed. Thus, for each pixel in aigant patch,

(K + 1)L multiplying andKL — 1 plus operations are needed, respectively. For a less-
significant patch, each pixel is obtained bymultiply andL — 1 plus operations. It

is noticeable that bicubic interpolation is applied to theole image. Thus, for a LR
imageY e ZM*N with a magnifying factoF, the number of interpolated pixels is equal
to (F2 — 1)MN. According to [140], each interpolated pixel is obtainedByy= 70
multiply and B, = 45 plus operations. Therefore, in PCPE-MDSIDR, for each pixel

in HR image, the average multiply and plus operations carobgated as follows:

~ mF20%(K + 1)L + mpF202L + B (F2 — 1)MN
- F2MN

Bm (6.8)

g - MF?R2(KL - 1)+ mF?*(L - 1) + B.(F? - )MN
P FZMN

(6.9)
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In MDSISR, all the patches are treated equally as significatth@s. The aver-
age multiply and plus operations per pixel are equaB}o= Mee (DL ang O =

Niotalb?(KL—1 i
Nead (LD ' respectively.

Theorem 1 When K> 1,my, mp, mg > 0O, if mﬁ"‘* ma>(KL, e 1)) where L denotes
the number of atoms in one dictionary, the average operdtmeas per pixel in PCPE-
MDSISR is smaller than MDSISR.

TheProof of Theorem 1can refer to 6.5.
It is indicated that when the proportion of less-significant smooth patches in
), the proposed PCPE-MDSISR can re-

total to Nya iS greater tharma>(KL, L(K )

9 and

duce the computational cost for each pixel. Sihce> B, i L(K T

are very
small. According to [113].L is set 1000 to achieve high reconstruction accuracy.
Therefore, as Iong as the number of less-significant and gnpatches takes up more
thanmax(iZ, 32)%, the required number of multiplying and plus operation®CPE-

MDSISR are less than those of MDSISR.

6.3 Experimental studies

To evaluate the performances of our proposed PCPE-MDSISR onauct experi-
ments on 14 representative images from benchmark databk27]. All the experi-

ments are processed on the computer Core i7 3.4GHz with 8GB RAM.

6.3.1 Experimental settings
The training set for dictionaries

The training set is composed of 50000 pairs of HR and LR patciredomly extracted
from the training images used in [113], including varioupdy of images, such as
plants, human faces, animals, architectures and cars. rdimng set of HR and LR
patches are grouped int clusters by k-means clustering, respectively. The corre-
sponding coupled dictionaries can be trained from eachesio$training patches. For

the global coupled dictionarids) andD/, they are trained from the whole training set
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which consists of dferent structural elements. For fairness comparison, #eirig
algorithm is K-SVD [121}.

Parameter settings

In the experiment, the input LR image patch i 3 with 1 overlapped pixel among
the adjacent patches. The number of clusters is sét-a%. The zooming factor is 3,
which indicates that the LR image is obtained by downsarggdi original HR test

image by a X 3 factor and the corresponding HR patch is®with overlap of 3 pixels

in HR patch.

Quality assessment metrics

The Peak signal-to-noise ratio (PSNR), Structural similandex (SSIM) [52] and
Feature Similarity (FSIM) are used to assess the qualityeféconstructed HR image.
SSIM and FSIM are real values between 0 and 1, where largee \d#notes higher
similarity between the two compared images.

Besides the time cost of reconstruction, operation savir®) (©considered, which
is defined as the relative reduction of the average operétioitiply and plus) times
per patch and per pixel.

T — T
TO

m

Tp—T9

T

tch
OSQaC —

osPateh — (6.10)

whereT,, andT, denote the average multiply and plus operation times fon atch,

respectivelyT{ andT) are the operation times in MDSISR.

pixel _ |Bm B B%l

OSX —_ B—Ign

. |B, — BY|

pixel _ =P p
oS = (6.11)

p

1The matlab code is available at http://www.cs.techniail/atad/software/.
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Images Methods
BI Zeyde's [127] ANR[18] A+[19] MLM[131] MDSISR Proposed
23.18 23.46 23.57 23.61 23.74  23.87 23.77
Baboon | 0.6902 0.7158 0.7164 0.7165 0.7172 0.71870.7188
0.9256 0.9563 0.9570  0.9571 0.9578 0.9596  0.9594
26.21 26.83 26.71 26.52 26.62  26.92 26.86
Barbara | 0.7963 0.8452 0.8448  0.8422 0.8445 0.8627 0.8622
0.9365 0.9546 0.9543  0.9535 0.9541 0.9612 0.9608
24.40 24.97 25.02 25.22 2525 25.36 25.28
Bridge | 0.8562 0.8702 0.8711  0.8852 0.8860 0.8872  0.8868
0.9256 0.9405 0.9417  0.9503 0.9516 0.9527 0.9524
26.58 27.07 27.11 27.37 27.42 27.61 27.54
Coastguard 0.8842 0.8992 0.8996  0.9115 0.9133 0.9160 0.9156
0.9475 0.9602 0.9607  0.9630 0.9640 0.9655  0.9652
23.12 23.97 24.02 24.38 24,46  24.52 24.45
Comic | 0.8653 0.8836 0.8843  0.8995 0.9013 0.90220.9024
0.9649 0.9786 0.9801  0.9831 0.9848 0.9858  0.9855
32.78 33.48 33.61 33.82 33.78  33.90 33.84
Face 0.8906 0.9128 0.9207  0.9289 0.9283 0.9312  0.9308
0.9631 0.9785 0.9846  0.9897 0.9891 0.9903  0.9899
27.18 28.38 28.49  29.05 28.83 28.86 28.62
Flowers | 0.7966 0.8286 0.8324 0.8578 0.8533 0.8540 0.8538
0.9267 0.9478 0.9501 0.9534 0.9518 0.9526 0.9524
31.18 33.22 33.20 34.28 33.98 33.77 33.64
Foreman | 0.8993 0.9232 0.9231 0.9378 0.9306 0.9287 0.9285
0.9815 0.9903 0.9902 0.9923 0.9912 0.9907 0.9906
31.69 32.98 33.13 33.52 33.63 33.72 33.65
Lena 0.8762 0.8817 0.8836  0.8845 0.8849 0.8855  0.8855
0.9741 0.9871 0.9877  0.9881 0.9884 0.9887  0.9885
27.02 27.91 27.94 28.30 28.42 2851 28.46
Man 0.8754 0.9048 0.9056  0.9218 0.9250 0.9269  0.9260
0.9465 0.9768 0.9778  0.9825 0.9831 0.9837  0.9835
29.40 31.12 31.14 32.12 31.76 31.89 31.80
Monarch | 0.9012 0.9235 0.9238 0.9422 0.9316 0.9365 0.9363
0.9573 0.9710 0.9712 0.9864 0.9819 0.9836 0.9834
32.39 34.11 33.83 34.69 3472 3481 34.76
Pepper | 0.8706 0.8854 0.8837  0.8861 0.8862 0.8864  0.8862
0.9737 0.9854 0.9846  0.9861 0.9862 0.9863  0.9862
23.68 25.20 25.01 26.10 2596  26.22 26.15
ppt3 0.8755 0.9021 0.9002  0.9335 0.9276 0.9363  0.9358
0.9451 0.9662 0.9650 0.9734 0.9706 0.9756  0.9753
26.61 28.50 28.38 29.02 28.97 29.14 29.05
Zebra | 0.8781 0.9068 0.9055  0.9213 0.9201 0.92280.9229
0.9336 0.9587 0.9546  0.9689 0.9677 0.9716 0.9710

Table 6.1: Statistical results of PSNR/dB, SSIM and FSIM
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whereB,,, andB, denote the average multiply and plus operation times fdn pacl,
respectively. A Larger OS indicates that the computationaiplexity is reduced more

significantly.

6.3.2 Comparison of Numerical and visual results

(c) zeyde’s (d) ANR

o Adw Ade A

(e) A+ (f) MLM (g) MDSISR (h) PCPE-MDSISR

Figure 6.7: Reconstructed HR images of Lena by different odgh

The bicubic interpolation (Bl) method, Zeyde’s method [12]M [131]2, ANR
[18], A+ [19] and MDSISR based on Zeyde’s method are compared witpriifgosed
PCPE-MDSISR. The numerical results are the average of 20 iues oy Table. 6.1,
where PSNR, SSIM and FSIM are compared. In the experimentuasi visual
system (HVS) is more sensitive to the change of luminancéeénithage, we only
reconstruct the luminance component (Y channel in YCbCr aolodel) by diferent
methods. For the other two components (Cb&Cr), bicubic imtlexpon is applied
to obtain the corresponding HR components. To get the lum@maomponent, the
image in RGB model is firstly transformed into YCbCr model, wh¥rdenotes the
luminance component. To determine the adaptive thresimoRId map, the size of
filter is 30 and the control parametet O.

In Table. 6.1, it is noticed that the proposed PCPE-MDSISRatbrms BI,

2MLM1, the basic version is used.
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(@ Original (b) BI (c) zeyde’s (d) ANR

(e) A+ (f) MLM | (g) MDSISR (h) PCPE-MDSISR

Figure 6.8: Reconstructed HR images of Baboon by differenhoukt

Zeyde’s, ANR and MLM but achieve competitive results witbgh of MDSISR and
A+ in terms of PSNR, SSIM and FSIM. Since the aim of PCPE-MDSISR ieduce
the computational complexity in conventional MDSISR, it &asonable for PCPE-
MDSISR to obtain competitive reconstruction results coragavith MDSISR with-
out significant deterioration. For SSIM, the results for edest images are even better
than those of MDSISR, because for some patches which comainsingle informa-
tive structure or smooth region, applying multi-dictiondrased reconstruction may
result in over-smoothness in these structures. Insteatlj tise single dictionary can
properly recover the structure. Besides, interpolatioetasethod provides relatively
fast and accurate reconstruction for smooth patches [1By [comparison, it is also
found that the deterioration of FSIM is the smallest whicHigates that PC feature
take dfect in detecting and preserving the informative structstesh as edges, cor-
ners, line segments and textures accurately.

The original HR image and the visual comparison of recoestdiHR images,
the image of lena and baboon, are presented in figures. 6.8.8ndt can be found
that Bl generates more smooth edges and textures in HR imalgeough Zeyde’s
method is able to obtain better result, there exists manyifgignt ringing artifacts

on the edges of the image and some structures are not maithtaml in HR image,
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resulting the degradation in visual quality+AMDSISR and PCPE-MDSISR provide
more competitive visual results, where the sharpness @dbes and corners are well-
preserved and the textures are recovered more precisely.

It is also worth mentioning that A uses a large number of the local regressors to
set up the relationship between the LR and the HR patch, wdoald be very help-
ful to keep the details and maintain the sparsity. The nditiionary based method,
MDSISR may result in some over-smoothness of the regioresioc many atoms
are involved in the sparse regression and the sparsitysadifésrent dictionaries is ig-
nored. Even though some satisfactory results can be obthingetting a large number
of dictionaries, how to overcome the over-smoothness aril€uincrease the image
guality is still a question to be resolved in the future.

The comparison for running time offékerent SISR approaches are given in Fig.
6.9, where the results of 14 test images are included. It eacobcluded that both
ANR and A+ cost the least time in reconstruction process. Although MIRSs able
to achieve the best reconstructed HR image, it requires tig¢ mnning time. Com-
pared with conventional MDSISR, our proposed PCPE-MDSISRseaa almost half
of the running time meanwhile maintaining a competitiveorestructed result, which
improve the éiciency significantly. In PCPE-MDSISR, the patch evaluatioocpss
only requires less than 2s and bicubic interpolation is deted in about 0.1s to ob-
tain the whole HR image, which is much smaller compared wattovering several
HR patches by multiple dictionaries. In addition, the tinostcof PCPE-MDSISR is

also comparable with that of Zeyde’s baseline method.

6.3.3 Comparison of computational cost reduction

To further evaluate the capability of computational coguation of PCPE-MDSISR,
MDSISR and the method based on binary PC map in [93] are usée@. average
operation times (multiply and plus) are given in Table. &BRgre the results of five
selected test images are presented.

In Table. 6.2, the average multiplying and plus operatiores for each patch and
each pixel are givenTn,, T,, By and B, The average result are obtained by trying

out different combinations of parameterandt in the adaptive threshold, where the
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Figure 6.9: Comparison for running time of different SISR hoets

Images Methods T, T, OSP*" osPaeh B B, 0OsP* osP
Lena MDSISR 50 4.0 - ~ 131842 109847 - -
Binary PCmap 3.2 32 36%  20% 7679.6 5467.3 41.8% 50.2%
Proposed 2.7 2.1 46% 475% 6953.9 5173.8 53.0% 52.9%
Peppers ~ MDSISR 50 4.0 - ~ 131842 109847 - -
Binary PCmap 3.3 3.3 34% 17.5% 80945 6247.2 38.6% 43.1%
Proposed 2.7 2.1 46% 475% 70153 5855.1 46.8% 46.7%
Barbara ~ MDSISR 50 4.0 - - 131842 109847 - -
Binary PCmap 3.4 3.4 32%  15% 8738.0 6550.3 33.7% 40.4%
Proposed 2.8 2.2 440% 450% 71924 60035 45.4% 45.3%
Baboon ~ MDSISR 50 4.0 - - 131842 109847 - -
Binary PCmap 3.0 3.0 40%  25%  7587.0 5402.4 425% 50.8%
Proposed 2.2 1.7 56.0% 450% 5827.4 4867.2 55.8% 55.7%
Bridge MDSISR 50 40 - - 131842 109847 - -
Binary PCmap 3.1 3.1 38% 225% 7991.5 58057 39.4% 47.1%
Proposed 2.6 2.0 48% 50.0% 6401.2 5342.3 51.4% 51.3%

Table 6.2: Comparison of the number of operations and avenpgetion saving

integerf € [10,45] with interval of 5 and € [-20, 20] is an integer with interval of 5.

In our experimentmy, m, andmg are determined by the patch evaluation process. For

example, wherf = 45 andt = 20, Nyota = 7056,m; = 3618,m, = 532 andmz = 2906

are obtained for baboodT, T} is {2.6, 21} for baboon according to equation (6.5)
and (6.6). The correspondi®SP**" andOSP**" can be obtained by equation (6.10).
It is observed that PCPE-MDSISR can achieve on average 56@6tred in T, and
45% inT,, which indicates that PCPE-MDSISR is able to reduce the ctatipnal

complexity significantly and save much computational coseconstruction.

For each pixel, the proposed PCPE-MDSISR also requires desnmaimber of
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Figure 6.10: Hierarchical clustering results

multiplying and plus operations in reconstruction and saueh computing resources
compared with MDSISR. For the test images, PCPE-MDSISR oiatpes the com-

pared method i©®SP* with a 133% gain anddSP*® with a 49% increase at most.

6.3.4 Comparison with sparse group lasso

The sparse group Lasso [142] also considers the sparsseepadon among fferent
groups, which is usually applied to obtain discriminatigpnesentation for regression
and classification. In our proposed PCPE-MDSISR, we solve kbigayand local
sparse representation, respectively rather than ingeginatn into one representation
model (group lasso have two regularization parametershndrie dificult to balance).
The sparse group lasso is applied as the sparse representsthod for each
patch and the PSNR results are listed in Fig. 6.11. In thigexnt, both the reg-
ularization parameters are set td @nd the sparsity is 20% of the length of sparse
representation vector. It can be concluded that the praposgthod has gained 0.1-

0.2dB improvement compared with sparse group lasso bas#wbdce Group lasso
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Figure 6.11: PSNR comparison between sparse group lassb@pdoposed method

considers the sparse representation amofigrdnt groups, thus there is a lot of re-
dundant information for each patch. Then, some over-snmesth and degradation
over the smooth region can be caused. Besides, the sparalgpiditicult to control
by using sparse group Lasso. In short, PCPE-MDSISR is maagéeceto methodol-
ogy in reconstruction task while group lasso concerns marthe classification and

regression model.

6.3.5 Results of hierarchical clustering

The partition of significant patches, less-significant pascand smooth patches is au-
tomatically determined by hierarchical clustering. In.F&g10, the clustering results
are shown, in which the first layer and second layer are imdushenf = 25 and

t =-20.

It can be seen from Fig.6.10 that more than half of all thelped@re considered as
smooth patches, which are directly reconstructed by Bl atltmon-smooth patches,
significant patches takes up a dominant proportion compaitédess-significant ones.
Since only the non-smooth patches need to be reconstrugtidttonary-based method,

it requires less computational cost compared with MDSISR.

6.3.6 The impact of the number of significant patches

The number of significant patchesy, greatly dfects the operation saving and the
reconstruction quality in the reconstruction. In Fig. 6afl Fig. 6.13, the relation-

ship betweemy, and multiply operation saving)SP**" and betweemy, and MSE of
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reconstructed HR image are plotted in a three-dimensimwadinates.

At=5
ot=-5
0t=-15

MSE 426 2000

Figure 6.12: The relationship among, MSE andOSP™® image of girl, whert =
-15-5,5

At=5
ot=-5

MSE 1115 2000

pixel

Figure 6.13: The relationship among, MSE andOS; ™, image of Boat, whem =
-15,-5,5

In Fig. 6.12 and Fig. 6.13, it is observed that MSE decreas#sthe increase
of my, which indicates that more significant patches help to imgrihe quality of
the reconstructed HR image. When becomes smaller, the multiply operation sav-
ing increases significantly, because the significant patclest more computational
resources. Itis also found that the operation saving and M&E generalized tradgo
relationship under dierent settings off.

In a real application, it is an interesting issue to find thiabhee between the com-
plexity reduction and quality degradation. For examplejsien makers can select the
point with the best compromise based on knee detection appror his preference.

As we don't focus on this issue, the discussion is not extemaéhis paper.
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6.3.7 The effect of the parameters

The dfect of f andt on the reconstructed HR image are investigated. We study the
relationship betweefh andmy, my, andmg under diterent values of, respectively. We
take the image of Lena for instance.

In Fig. 6.14, it is noticed that the number of less-signiftaamuch smaller than
that of significant patches or smooth patches, which follthes real situation that
only a small number of patches contains single informattvectures. For each
the number of significant patches increases with the augofesize of f. It can be

explained as follows:

1) More pixels are used to calculated the local mean, whicketsas the adaptive
threshold, the threshold tends to be smaller and more irdtwenpixels are kept.
Therefore, the number of non-smooth patches (the sum oifisemt patches and

less-significant patches) rises;

2) The number of less-significant patches does not changédisantly with respect

to f and its increase can be ignored compared with that of norednpatches;

In addition, the results about th&ects of the proportion of significant patches on
the computational cost reduction is presented in Fig. Gutigre a linear relationship
is established. A larger proportion of significant patchesans higher cost and less
computational cost reduction. So, it is critical to adji& proportion of the significant

patches to meet the requirement of reducing the computdtcamplexity.

6.3.8 Effectiveness of PC feature in complexity reduction

To demonstrate theffectiveness of using PC feature in reducing the complexity in

MDSR, we choose the gradient feature and random selectidmochébr comparison.
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In the experiment, the gradient operator is defined as
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10 O

3 0

-3

-10

-3

(6.12)
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3 10 3
1
@—E 0O 0 O (6.13)
-3 -10 -3

The input LR imageY is convolved by (6.12) and (6.13), respectively. Thus, two

components of gradient m&l andG2 are obtained. The gradient m&@ps calculated

by

G(y) = YG1(y)? + G2(y)? (6.14)

whereG(y) denotes the value of pixel € Y in gradient map. Thef is binarized
according to the adaptive threshold in (5.11), which workthe same way to separate
all the patches into important ones and unimportant one€C8EFVIDSISR.

For random selection method, we select a certain numbexefgas active pixels
in LR image randomly. These chosen pixels are set as 1 andtliee pixels are
0, which constitute of the random selection map. So the spmeding significant
patches can be determined in the same way as PCPE-MDSISR.

Both the robustness and the reconstruction quality of theethompared methods
are considered. We randomly choose the same number of pixedds the active pixels
in PC map, gradient map and random selection map to let thesks pake upc% of
the total number of pixels, respectively. For fairness imary PC map, gradient map
and random selection map are obtained when 25 andt = —20. The experiment is
repeated 50 times for eacland the boxplot for PSNR, SSIM, MSSIM and FSIM of the
three methods are shown in Fig. 6.16, where equal to 30, 40 and 50, respectively.

In Fig. 6.16, the results of PC, gradient and random seleetierlisted from left
to right for eactc. It is noticed that PC feature is able to provide higher aacyiand
better robustness compared with gradient feature and narséection. The binary
PC map, gradient map and random selection map are presenkegl.i6.17, where
30% of the pixels are selected as significant pixels. Thefggnt pixels in PC map
distributed more-concentrated on the informative stmaswf image than those in
gradient map and random selection map, which is helpfulHergatch evaluation in
PCPE-MDSISR. Although the gradient feature is able to exttecedges féciently,
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Figure 6.16: Comparison of PC, gradient and random seleati@omplexity reduc-
tion: image of girl. For each, left: PC, middle: gradient and right: random selection.

it ignores some objectives which have weak contrast withbekground. For the

random selection map, the structures can not be recognizdd a

6.4 Conclusion

In this paper, we proposed a PC based patch evaluator (PCP&Juoe the compu-
tational complexity in conventional MDSISR. PC feature of ickages are extracted
and utilized. PCPE-MDSISR combines the advantages of neilfigtionaries, global
dictionaries and bicubic interpolation. Firstly, the sfgrant patch can be recovered
precisely by multiple dictionaries; Secondly, applying tlobal dictionary can avoid
causing the over-smoothness in less-significant and aefaster reconstruction; Last
but not least, Bl performs fast anfectively in recovering the smooth region. We em-
ploy Zeyde’s method as a baseline approach for MDSISR. Exyerial studies sug-
gest that PCPE-MDSISR not only outperforms some stateefth SISR methods,

but also greatly reduce the computational complexity inrde®nstruction process of
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Figure 6.17: Comparison of binary PC map, gradient map angbrarselection map

conventional MDSISR. In this study, although only one typigdDSISR is investi-

gated, our proposed patch evaluation method can be inaigubinto other MDSISR

frameworks to reduce the computational cost brought byipleltictionaries in re-

construction process.

6.5 Proof of Theorem 1

If Bm < B2, then

m F2b2(K + 1)L + mpF2b2L + By (F2 — 1)MN - Neotalb?(K + 1)L

F2MN MN

myb?(k + 1)L . mpb?L . (F? - 1)By B (M + mp + mg)b?(k + 1)L
MN MN F2 MN

ML (F2- 1B _ (mP(k+ 1L | (mo)bP(k+ 1)L (6.15)

MN F2 MN MN
(F? - 1)By B (Kmg + (K + 1)mg)b?L

F2 MN
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since ™18« < B, to satisfy the inequality stated above, then

B (Kmp + (K + 1)mg) b2L

Bx
MN (6.16)
MN B, < Km, + (K + 1)
= m mg

As the patches are divided with overldf} < Niga. SO,

MNBx < NtotaIBx
b2L L
K+1 Niotal B
My + ; ms > totil X
(6.17)

Ntotal B><

+K+1> +mg >
mszsmzms KL

m+my By
Ntotal KL

< Km + (K + 1)mg

whereB, = 70.
Similarly, we can prove that ﬁ% > (K?—+1)L’ Bp < B?,, whereB, = 45.
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Chapter 7

Conclusions and Future Works

7.1 Conclusions

This thesis mainly focus on variants of modeling and optatian in CS reconstruc-
tion. Furthermore, it also investigates the sparse codiadeinand its applications in
image superresolution reconstruction.

First, we formulate DL based BCS as a bi-level optimizationbfgm in which
the upper level is to approximate the reconstructed subkdby minimizing the CS
measurement discrepancy and the lower level is to optinizesparse cdicients
represented by locally learned dictionary by minimizing siparsity of the image sub-
block. The perceptual nonlocal similarity (PNLS) is propdss the constraint for the
upper-level optimization, which can reduce the block acdtifamong the sub-blocks.
We apply a combination ¢f andl, norm minimization method to slove this formulated
problem. Experimental results demonstrate that the pexpogethod is fective and
achieves higher performance on numerical and visual sethdh some state-of-the-art
single-level optimization methods in BCS.

Second, we formulate the CS based sparse signal reconstradtia problem of
locating the nonzero entries of the signal. In order to redhe impact of noise and
better locate the nonzero entries, we proposed a two-phgsatlam which works
in a coarse-to-refine manner. Experimental results on eadhsignals as well as
randomly-generated signals demonstrate that our propostkdod outperforms the

above methods, achieving higher recover precision andtaiaing smaller sparsity.
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Third, we propose an adaptive sparsity estimation modehiage patches, which
consists of an filine training phase and online estimation phase. fline training,
MOEA/D is applied to obtain a group of Pareto solutions and detezrai sparsity
range for the training patch. In the online estimation ph&sea query patch, its
sparsity range is set to that of the most similar trainingipatAnd the corresponding
sparse representation vector can be obtained by a spegsttycted greedy algorithm
(SRGA) constrained by this range. Experimental studies antireark dataset demon-
strate that our proposed approach is able to achieve bptesesrepresentation quality
in terms of PSNR and codindfiency.

In chapter 5, we proposed a complexity reduction method iti+dictionary based
SR via phase PC. The PC map of LR image is extracted and bidaozgistinguish
the importance of the image patches. Then the importanhpatare reconstructed by
multi-dictionary based SR method and the unimportant matdly single-dictionary
based SR. The final reconstructed result is obtained by angrdge overlapped region
between the adjacent patches. Experimental studies démraenghat the proposed
method can not only achieve competitive results comparddmilti-dictionary based
SR method, but also save much time and reduce the compwthtiomplexity in the
reconstruction process.

Finally, we proposed a PC based patch evaluator (PCPE) teedtie computa-
tional complexity in conventional MDSISR. PCPE-MDSISR congs the advantages
of multiple dictionaries, global dictionaries and bicubiterpolation. Firstly, the sig-
nificant patch can be recovered precisely by multiple dicrees; Secondly, applying
the global dictionary can avoid causing the over-smoothmedess-significant and
achieve faster reconstruction; Last but not least, Bl perfofast and £ectively in
recovering the smooth region. Experimental studies sudgasPCPE-MDSISR not
only outperforms some state-of-the-art SISR methods,|batgreatly reduce the com-

putational complexity in the reconstruction process.
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7.2 Future Works

There are still several issues that need to be addressedfielimg and optimization
in CS reconstruction and sparse coding. The following waylkdirections to further

improve the current proposals are listed as follows:

e For the BCS reconstruction, although the bilevel formulabdéBCS is reason-
able, the implementation of the algorithm is also very caiti future research is
to focus on how to design arffective and &icient algorithm to solve the bilevel

problem.

e For the sparse signal reconstruction, the supervisedifgpapproach which is

more powerful to classify the nonzero entries can be takienconsideration.

e For sparsity estimation, although MOEAs can achieve coitiygetesults com-
pared with the conventional greedy algorithm empirically; proposed method
for sparsity estimation is also largely dependent on tharpater setting. It is
essential to select and determine the relevant paramelapsieely or in a more
intelligent way. More importantly, it is another issue t@dthnetically prove the

effectiveness of this approach, which is the target of the éuvork.
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